metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/bert-base-nli-mean-tokens
metrics:
- accuracy
widget:
- text: >-
gamenya seru bagus paket:gamenya seru bagus paket worth it gak lag mudah
mainnya tugas hadiah bagus modenya sayangnya game kadang ngebug gapapa
kasih
- text: >-
tolong perbaiki analog nya pengaturan posisi:tolong perbaiki analog nya
pengaturan posisi berpindah pindah
- text: >-
visualisasi bagus segi graphic:visualisasi bagus segi graphic bagus ya
game cocok sih mantra nya banyakin contoh mantra penghilang
- text: >-
jaringan udah bagus game jaringan nya bagus:game nya udah bagus jaringan
game nya bermasalah jaringan udah bagus game jaringan nya bagus mohon
nambahin karakter
- text: >-
kali game stuk loading server pakai jaringan:game bagus cma kendala kali
game stuk loading server pakai jaringan wifi masuk jaringan jaringan
bermasalah main game online lancar game susah akses tolong diperbaiki
supercell detik bermain coc lancar masuk kendala
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Polarity Model with sentence-transformers/bert-base-nli-mean-tokens
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8478260869565217
name: Accuracy
SetFit Polarity Model with sentence-transformers/bert-base-nli-mean-tokens
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/bert-base-nli-mean-tokens as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/bert-base-nli-mean-tokens
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: Funnyworld1412/ABSA_bert-base_MiniLM-L6-aspect
- SetFitABSA Polarity Model: Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negatif |
|
positif |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8478 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Funnyworld1412/ABSA_bert-base_MiniLM-L6-aspect",
"Funnyworld1412/ABSA_bert-base_MiniLM-L6-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 28.3626 | 83 |
Label | Training Sample Count |
---|---|
negatif | 738 |
positif | 528 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3075 | - |
0.0158 | 50 | 0.1854 | - |
0.0316 | 100 | 0.4431 | - |
0.0474 | 150 | 0.3251 | - |
0.0632 | 200 | 0.2486 | - |
0.0790 | 250 | 0.2371 | - |
0.0948 | 300 | 0.3149 | - |
0.1106 | 350 | 0.1397 | - |
0.1264 | 400 | 0.1131 | - |
0.1422 | 450 | 0.2388 | - |
0.1580 | 500 | 0.1256 | - |
0.1738 | 550 | 0.157 | - |
0.1896 | 600 | 0.3768 | - |
0.2054 | 650 | 0.022 | - |
0.2212 | 700 | 0.221 | - |
0.2370 | 750 | 0.122 | - |
0.2528 | 800 | 0.028 | - |
0.2686 | 850 | 0.102 | - |
0.2844 | 900 | 0.2231 | - |
0.3002 | 950 | 0.1853 | - |
0.3160 | 1000 | 0.2167 | - |
0.3318 | 1050 | 0.0054 | - |
0.3476 | 1100 | 0.027 | - |
0.3633 | 1150 | 0.0189 | - |
0.3791 | 1200 | 0.0033 | - |
0.3949 | 1250 | 0.2548 | - |
0.4107 | 1300 | 0.0043 | - |
0.4265 | 1350 | 0.0033 | - |
0.4423 | 1400 | 0.0012 | - |
0.4581 | 1450 | 0.1973 | - |
0.4739 | 1500 | 0.0006 | - |
0.4897 | 1550 | 0.001 | - |
0.5055 | 1600 | 0.0002 | - |
0.5213 | 1650 | 0.2304 | - |
0.5371 | 1700 | 0.0005 | - |
0.5529 | 1750 | 0.0025 | - |
0.5687 | 1800 | 0.0185 | - |
0.5845 | 1850 | 0.0023 | - |
0.6003 | 1900 | 0.185 | - |
0.6161 | 1950 | 0.0004 | - |
0.6319 | 2000 | 0.0003 | - |
0.6477 | 2050 | 0.0005 | - |
0.6635 | 2100 | 0.0126 | - |
0.6793 | 2150 | 0.0004 | - |
0.6951 | 2200 | 0.0103 | - |
0.7109 | 2250 | 0.0009 | - |
0.7267 | 2300 | 0.0019 | - |
0.7425 | 2350 | 0.0018 | - |
0.7583 | 2400 | 0.1837 | - |
0.7741 | 2450 | 0.002 | - |
0.7899 | 2500 | 0.0003 | - |
0.8057 | 2550 | 0.0006 | - |
0.8215 | 2600 | 0.2006 | - |
0.8373 | 2650 | 0.0003 | - |
0.8531 | 2700 | 0.0006 | - |
0.8689 | 2750 | 0.0003 | - |
0.8847 | 2800 | 0.0001 | - |
0.9005 | 2850 | 0.0002 | - |
0.9163 | 2900 | 0.0003 | - |
0.9321 | 2950 | 0.0002 | - |
0.9479 | 3000 | 0.0003 | - |
0.9637 | 3050 | 0.001 | - |
0.9795 | 3100 | 0.0002 | - |
0.9953 | 3150 | 0.0007 | - |
1.0 | 3165 | - | 0.2256 |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}