NamCyan's picture
Update README.md
43d2dd2
|
raw
history blame
4.75 kB
---
language:
- code
- en
task_categories:
- text-classification
tags:
- arxiv:2305.06156
license: mit
metrics:
- accuracy
widget:
- text: |-
Sum two integers</s></s>def sum(a, b):
return a + b
example_title: Simple toy
- text: |-
Look for methods that might be dynamically defined and define them for lookup.</s></s>def respond_to_missing?(name, include_private = false)
if name == :to_ary || name == :empty?
false
else
return true if mapping(name).present?
mounting = all_mountings.find{ |mount| mount.respond_to?(name) }
return false if mounting.nil?
end
end
example_title: Ruby example
- text: |-
Method that adds a candidate to the party @param c the candidate that will be added to the party</s></s>public void addCandidate(Candidate c)
{
this.votes += c.getVotes();
candidates.add(c);
}
example_title: Java example
- text: |-
we do not need Buffer pollyfill for now</s></s>function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);
}
example_title: JavaScript example
pipeline_tag: text-classification
---
## Table of Contents
- [Model Description](#model-description)
- [Model Details](#model-details)
- [Usage](#usage)
- [Limitations](#limitations)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Model Description
This model is developed based on [Codebert](https://github.com/microsoft/CodeBERT) and a 5M subset of [The Vault](https://huggingface.co/datasets/Fsoft-AIC/thevault-function-level) to detect the inconsistency between docstring/comment and function. It is used to remove noisy examples in The Vault dataset.
More information:
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** support.ailab@fpt.com
## Model Details
* Developed by: [Fsoft AI Center](https://www.fpt-aicenter.com/ai-residency/)
* License: MIT
* Model type: Transformer-Encoder based Language Model
* Architecture: BERT-base
* Data set: [The Vault](https://huggingface.co/datasets/Fsoft-AIC/thevault-function-level)
* Tokenizer: Byte Pair Encoding
* Vocabulary Size: 50265
* Sequence Length: 512
* Language: English and 10 Programming languages (Python, Java, JavaScript, PHP, C#, C, C++, Go, Rust, Ruby)
* Training details:
* Self-supervised learning, binary classification
* Positive class: Original code-docstring pair
* Negative class: Random pairing code and docstring
## Usage
The input to the model follows the below template:
```python
"""
Template:
<s>{docstring}</s></s>{code}</s>
Example:
from transformers import AutoTokenizer
#Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
input = "<s>Sum two integers</s></s>def sum(a, b):\n return a + b</s>"
tokenized_input = tokenizer(input, add_special_tokens= False)
"""
```
Using model with Jax and Pytorch
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, FlaxAutoModelForSequenceClassification
#Load model with jax
model = FlaxAutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
#Load model with torch
model = AutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
```
## Limitations
This model is trained on 5M subset of The Vault in a self-supervised manner. Since the negative samples are generated artificially, the model's ability to identify instances that require a strong semantic understanding between the code and the docstring might be restricted.
It is hard to evaluate the model due to the unavailable labeled datasets. GPT-3.5-turbo is adopted as a reference to measure the correlation between the model and GPT-3.5-turbo's scores. However, the result could be influenced by GPT-3.5-turbo's potential biases and ambiguous conditions. Therefore, we recommend having human labeling dataset and fine-tune this model to achieve the best result.
## Additional information
### Licensing Information
MIT License
### Citation Information
```
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
```