language:
- code
- en
task_categories:
- text-classification
tags:
- arxiv:2305.06156
license: mit
metrics:
- accuracy
widget:
- text: |-
Sum two integers</s></s>def sum(a, b):
return a + b
example_title: Simple toy
- text: >-
Look for methods that might be dynamically defined and define them for
lookup.</s></s>def respond_to_missing?(name, include_private = false)
if name == :to_ary || name == :empty?
false
else
return true if mapping(name).present?
mounting = all_mountings.find{ |mount| mount.respond_to?(name) }
return false if mounting.nil?
end
end
example_title: Ruby example
- text: >-
Method that adds a candidate to the party @param c the candidate that will
be added to the party</s></s>public void addCandidate(Candidate c)
{
this.votes += c.getVotes();
candidates.add(c);
}
example_title: Java example
- text: |-
we do not need Buffer pollyfill for now</s></s>function(str){
var ret = new Array(str.length), len = str.length;
while(len--) ret[len] = str.charCodeAt(len);
return Uint8Array.from(ret);
}
example_title: JavaScript example
pipeline_tag: text-classification
Table of Contents
Model Description
This model is developed based on Codebert and a 5M subset of The Vault to detect the inconsistency between docstring/comment and function. It is used to remove noisy examples in The Vault dataset.
More information:
- Repository: FSoft-AI4Code/TheVault
- Paper: The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
- Contact: support.ailab@fpt.com
Model Details
- Developed by: Fsoft AI Center
- License: MIT
- Model type: Transformer-Encoder based Language Model
- Architecture: BERT-base
- Data set: The Vault
- Tokenizer: Byte Pair Encoding
- Vocabulary Size: 50265
- Sequence Length: 512
- Language: English and 10 Programming languages (Python, Java, JavaScript, PHP, C#, C, C++, Go, Rust, Ruby)
- Training details:
- Self-supervised learning, binary classification
- Positive class: Original code-docstring pair
- Negative class: Random pairing code and docstring
Usage
The input to the model follows the below template:
"""
Template:
<s>{docstring}</s></s>{code}</s>
Example:
from transformers import AutoTokenizer
#Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
input = "<s>Sum two integers</s></s>def sum(a, b):\n return a + b</s>"
tokenized_input = tokenizer(input, add_special_tokens= False)
"""
Using model with Jax and Pytorch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, FlaxAutoModelForSequenceClassification
#Load model with jax
model = FlaxAutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
#Load model with torch
model = AutoModelForSequenceClassification.from_pretrained("Fsoft-AIC/Codebert-docstring-inconsistency")
Limitations
This model is trained on 5M subset of The Vault in a self-supervised manner. Since the negative samples are generated artificially, the model's ability to identify instances that require a strong semantic understanding between the code and the docstring might be restricted.
It is hard to evaluate the model due to the unavailable labeled datasets. ChatGPT is adopted as a reference to measure the correlation between the model and ChatGPT's scores. However, the result could be influenced by ChatGPT's potential biases and ambiguous conditions. Therefore, we recommend having human labeling dataset and fine-tune this model to achieve the best result.
Additional information
Licensing Information
MIT License
Citation Information
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}