FremyCompany commited on
Commit
153a454
1 Parent(s): 607ae8a

Correct model name in example code

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -82,7 +82,7 @@ Then you can use the model like this:
82
  from sentence_transformers import SentenceTransformer
83
  sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
84
 
85
- model = SentenceTransformer('FremyCompany/BioLORD-STAMB2-v1')
86
  embeddings = model.encode(sentences)
87
  print(embeddings)
88
  ```
@@ -103,8 +103,8 @@ def mean_pooling(model_output, attention_mask):
103
  sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
104
 
105
  # Load model from HuggingFace Hub
106
- tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-STAMB2-v1')
107
- model = AutoModel.from_pretrained('FremyCompany/BioLORD-STAMB2-v1')
108
 
109
  # Tokenize sentences
110
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
82
  from sentence_transformers import SentenceTransformer
83
  sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
84
 
85
+ model = SentenceTransformer('FremyCompany/BioLORD-2023')
86
  embeddings = model.encode(sentences)
87
  print(embeddings)
88
  ```
 
103
  sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
104
 
105
  # Load model from HuggingFace Hub
106
+ tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-2023')
107
+ model = AutoModel.from_pretrained('FremyCompany/BioLORD-2023')
108
 
109
  # Tokenize sentences
110
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')