FremyCompany
commited on
Commit
•
153a454
1
Parent(s):
607ae8a
Correct model name in example code
Browse files
README.md
CHANGED
@@ -82,7 +82,7 @@ Then you can use the model like this:
|
|
82 |
from sentence_transformers import SentenceTransformer
|
83 |
sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
|
84 |
|
85 |
-
model = SentenceTransformer('FremyCompany/BioLORD-
|
86 |
embeddings = model.encode(sentences)
|
87 |
print(embeddings)
|
88 |
```
|
@@ -103,8 +103,8 @@ def mean_pooling(model_output, attention_mask):
|
|
103 |
sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
|
104 |
|
105 |
# Load model from HuggingFace Hub
|
106 |
-
tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-
|
107 |
-
model = AutoModel.from_pretrained('FremyCompany/BioLORD-
|
108 |
|
109 |
# Tokenize sentences
|
110 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
82 |
from sentence_transformers import SentenceTransformer
|
83 |
sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
|
84 |
|
85 |
+
model = SentenceTransformer('FremyCompany/BioLORD-2023')
|
86 |
embeddings = model.encode(sentences)
|
87 |
print(embeddings)
|
88 |
```
|
|
|
103 |
sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
|
104 |
|
105 |
# Load model from HuggingFace Hub
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-2023')
|
107 |
+
model = AutoModel.from_pretrained('FremyCompany/BioLORD-2023')
|
108 |
|
109 |
# Tokenize sentences
|
110 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|