upload tokenization_arcade100k.py
Browse files- tokenization_arcade100k.py +276 -0
tokenization_arcade100k.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2023 Alibaba Cloud & Stability AI.
|
3 |
+
#
|
4 |
+
# Tongyi Qianwen LICENSE AGREEMENT:
|
5 |
+
# https://github.com/QwenLM/Qwen/blob/5aa84bdfd3237b37f01bc88cd49b3279b9a71d0b/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
|
6 |
+
"""Tokenization classes for Arcade100k."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import os
|
10 |
+
import unicodedata
|
11 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
12 |
+
|
13 |
+
import tiktoken
|
14 |
+
from transformers.utils import logging
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
VOCAB_FILES_NAMES = {"vocab_file": "arcade100k.tiktoken"}
|
20 |
+
NAME = "arcade100k"
|
21 |
+
|
22 |
+
|
23 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
24 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
25 |
+
contents = f.read()
|
26 |
+
return {
|
27 |
+
base64.b64decode(token): int(rank)
|
28 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
ENDOFTEXT = "<|endoftext|>"
|
33 |
+
FIM = [
|
34 |
+
"<|fim_prefix|>",
|
35 |
+
"<|fim_middle|>",
|
36 |
+
"<|fim_suffix|>",
|
37 |
+
"<|fim_pad|>",
|
38 |
+
]
|
39 |
+
# `StarCoder` Tokens
|
40 |
+
CODE = [
|
41 |
+
"<gh_stars>",
|
42 |
+
"<filename>",
|
43 |
+
"<issue_start>",
|
44 |
+
"<issue_comment>",
|
45 |
+
"<issue_closed>",
|
46 |
+
"<jupyter_start>",
|
47 |
+
"<jupyter_text>",
|
48 |
+
"<jupyter_code>",
|
49 |
+
"<jupyter_output>",
|
50 |
+
"<empty_output>",
|
51 |
+
"<commit_before>",
|
52 |
+
"<commit_msg>",
|
53 |
+
"<commit_after>",
|
54 |
+
"<reponame>",
|
55 |
+
]
|
56 |
+
CHAT = [
|
57 |
+
"<|im_start|>", # Chat: Input message start
|
58 |
+
"<|im_end|>", # Chat: Input message end
|
59 |
+
]
|
60 |
+
PAUSE = "<|pause|>" # Think before you speak (https://arxiv.org/abs/2310.02226)
|
61 |
+
REGISTERS = [
|
62 |
+
f"<|reg{i}|>" for i in range(0, 8)
|
63 |
+
] # Register 0 sink token (https://arxiv.org/abs/2309.17453)
|
64 |
+
ENDOFPROMPT = "<|endofprompt|>"
|
65 |
+
SPECIAL_TOKENS_NAMES = (
|
66 |
+
[ENDOFTEXT]
|
67 |
+
+ FIM
|
68 |
+
+ CODE
|
69 |
+
+ [ENDOFPROMPT]
|
70 |
+
+ CHAT
|
71 |
+
+ [PAUSE]
|
72 |
+
+ REGISTERS
|
73 |
+
+ ["<|extra0|>"]
|
74 |
+
)
|
75 |
+
START_ID = 100257
|
76 |
+
SPECIAL_TOKENS = {t: START_ID + i for i, t in enumerate(SPECIAL_TOKENS_NAMES)}
|
77 |
+
|
78 |
+
|
79 |
+
def _arcade100k(vocab_file: str):
|
80 |
+
mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
81 |
+
|
82 |
+
return {
|
83 |
+
"name": NAME,
|
84 |
+
"pat_str": r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
|
85 |
+
"mergeable_ranks": mergeable_ranks,
|
86 |
+
"special_tokens": SPECIAL_TOKENS,
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
class Arcade100kTokenizer(PreTrainedTokenizer):
|
91 |
+
"""
|
92 |
+
Construct a Arcade100k tokenizer backed by `tiktoken`.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
vocab_file (`str`):
|
96 |
+
Path to the vocabulary file.
|
97 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
98 |
+
How to handle errors in decoding UTF-8 byte sequences.
|
99 |
+
WARNING: the default behaviour of this function is lossy, since decoded bytes are not
|
100 |
+
guaranteed to be valid UTF-8. You can control this behaviour using the `errors` parameter,
|
101 |
+
for instance, setting `errors=strict`.
|
102 |
+
"""
|
103 |
+
|
104 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
105 |
+
model_input_names = ["input_ids", "attention_mask"]
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_file: str,
|
110 |
+
errors: str = "replace",
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(errors=errors, **kwargs)
|
114 |
+
self._tiktoken_config = _arcade100k(vocab_file)
|
115 |
+
self.tokenizer = tiktoken.Encoding(**self._tiktoken_config)
|
116 |
+
|
117 |
+
# TODO: Remove this assertion
|
118 |
+
assert (
|
119 |
+
len(self.tokenizer._mergeable_ranks)
|
120 |
+
+ len(self.tokenizer._special_tokens)
|
121 |
+
+ 1
|
122 |
+
== self.tokenizer.n_vocab
|
123 |
+
), f"{len(self.tokenizer._mergeable_ranks) + len(self.tokenizer._special_tokens)} != {self.tokenizer.n_vocab} in encoding"
|
124 |
+
|
125 |
+
self.decoder = {i: n for n, i in self.tokenizer._mergeable_ranks.items()}
|
126 |
+
self.decoder.update({i: n for n, i in self.tokenizer._special_tokens.items()})
|
127 |
+
self.eos_token = self.decoder[self.tokenizer.eot_token]
|
128 |
+
self.pad_token = self.decoder[self.tokenizer.eot_token]
|
129 |
+
# Expose for convenience
|
130 |
+
self.mergeable_ranks = self.tokenizer._mergeable_ranks
|
131 |
+
self.special_tokens = self.tokenizer._special_tokens
|
132 |
+
|
133 |
+
def __len__(self):
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
@property
|
137 |
+
def vocab_size(self):
|
138 |
+
return self.tokenizer.n_vocab
|
139 |
+
|
140 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
141 |
+
return self.tokenizer._mergeable_ranks
|
142 |
+
|
143 |
+
def convert_tokens_to_ids(
|
144 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
145 |
+
) -> List[int]:
|
146 |
+
ids = []
|
147 |
+
if isinstance(tokens, (str, bytes)):
|
148 |
+
if tokens in self.tokenizer._special_tokens:
|
149 |
+
return self.tokenizer._special_tokens[tokens]
|
150 |
+
else:
|
151 |
+
return self.tokenizer._mergeable_ranks.get(tokens)
|
152 |
+
for token in tokens:
|
153 |
+
if token in self.tokenizer._special_tokens:
|
154 |
+
ids.append(self.tokenizer._special_tokens[token])
|
155 |
+
else:
|
156 |
+
ids.append(self.tokenizer._mergeable_ranks.get(token))
|
157 |
+
return ids
|
158 |
+
|
159 |
+
def _add_tokens(
|
160 |
+
self,
|
161 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
162 |
+
special_tokens: bool = False,
|
163 |
+
) -> int:
|
164 |
+
if not special_tokens and new_tokens:
|
165 |
+
raise ValueError("Adding regular tokens is not supported")
|
166 |
+
for token in new_tokens:
|
167 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
168 |
+
if surface_form not in SPECIAL_TOKENS:
|
169 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
170 |
+
return 0
|
171 |
+
|
172 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
173 |
+
"""
|
174 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
`Tuple(str)`: Paths to the files saved.
|
178 |
+
"""
|
179 |
+
file_path = os.path.join(save_directory, "arcade100k.tiktoken")
|
180 |
+
with open(file_path, "w", encoding="utf8") as w:
|
181 |
+
for k, v in self.tokenizer._mergeable_ranks.items():
|
182 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
183 |
+
w.write(line)
|
184 |
+
return (file_path,)
|
185 |
+
|
186 |
+
def tokenize(
|
187 |
+
self,
|
188 |
+
text: str,
|
189 |
+
allowed_special: Union[Set, str] = "all",
|
190 |
+
disallowed_special: Union[Collection, str] = (),
|
191 |
+
**kwargs,
|
192 |
+
) -> List[Union[bytes, str]]:
|
193 |
+
"""
|
194 |
+
Converts a string in a sequence of tokens.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
text (`str`):
|
198 |
+
The sequence to be encoded.
|
199 |
+
allowed_special (`Literal["all"]` or `set`):
|
200 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
201 |
+
Default to "all".
|
202 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
203 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
204 |
+
Default to an empty tuple.
|
205 |
+
|
206 |
+
kwargs (additional keyword arguments, *optional*):
|
207 |
+
Will be passed to the underlying model specific encode method.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`List[bytes|str]`: The list of tokens.
|
211 |
+
"""
|
212 |
+
tokens = []
|
213 |
+
text = unicodedata.normalize("NFC", text)
|
214 |
+
|
215 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
216 |
+
for t in self.tokenizer.encode(
|
217 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
218 |
+
):
|
219 |
+
tokens.append(self.decoder[t])
|
220 |
+
return tokens
|
221 |
+
|
222 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
223 |
+
"""
|
224 |
+
Converts a sequence of tokens in a single string.
|
225 |
+
"""
|
226 |
+
text = ""
|
227 |
+
temp = b""
|
228 |
+
for t in tokens:
|
229 |
+
if isinstance(t, str):
|
230 |
+
if temp:
|
231 |
+
text += temp.decode("utf-8", errors=self.errors)
|
232 |
+
temp = b""
|
233 |
+
text += t
|
234 |
+
elif isinstance(t, bytes):
|
235 |
+
temp += t
|
236 |
+
else:
|
237 |
+
raise TypeError("token should only be of type types or str")
|
238 |
+
if temp:
|
239 |
+
text += temp.decode("utf-8", errors=self.errors)
|
240 |
+
return text
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.tokenizer._special_tokens:
|
251 |
+
return self.tokenizer._special_tokens[token]
|
252 |
+
if token in self.tokenizer._mergeable_ranks:
|
253 |
+
return self.tokenizer._mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.tokenizer.eot_token]
|
276 |
+
return self.tokenizer.decode(token_ids)
|