FredZhang7
commited on
Commit
·
95a5efe
1
Parent(s):
bee5fba
finalize upload
Browse files
README.md
CHANGED
@@ -3,24 +3,87 @@ license: cc-by-nc-3.0
|
|
3 |
datasets:
|
4 |
- FredZhang7/toxi-text-3M
|
5 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
**I have decided to release all auto-moderation models at once sometime in July. The curated datasets for training these models will be avaliable first.**
|
9 |
|
10 |
<br>
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
<br>
|
21 |
|
22 |
<br>
|
23 |
|
24 |
-
Models tested: roberta, xlm-roberta, bert-
|
25 |
-
|
26 |
-
Model chosen based on cost-efficiency and performance: bert-multilingual-cased
|
|
|
3 |
datasets:
|
4 |
- FredZhang7/toxi-text-3M
|
5 |
pipeline_tag: text-classification
|
6 |
+
language:
|
7 |
+
- ar
|
8 |
+
- es
|
9 |
+
- pa
|
10 |
+
- th
|
11 |
+
- et
|
12 |
+
- fr
|
13 |
+
- fi
|
14 |
+
- no
|
15 |
+
- hu
|
16 |
+
- lt
|
17 |
+
- ur
|
18 |
+
- so
|
19 |
+
- pl
|
20 |
+
- el
|
21 |
+
- mr
|
22 |
+
- sk
|
23 |
+
- gu
|
24 |
+
- he
|
25 |
+
- af
|
26 |
+
- te
|
27 |
+
- ro
|
28 |
+
- lv
|
29 |
+
- sv
|
30 |
+
- ne
|
31 |
+
- kn
|
32 |
+
- it
|
33 |
+
- mk
|
34 |
+
- cs
|
35 |
+
- en
|
36 |
+
- de
|
37 |
+
- da
|
38 |
+
- ta
|
39 |
+
- bn
|
40 |
+
- pt
|
41 |
+
- sq
|
42 |
+
- tl
|
43 |
+
- uk
|
44 |
+
- bg
|
45 |
+
- ca
|
46 |
+
- sw
|
47 |
+
- hi
|
48 |
+
- zh
|
49 |
+
- ja
|
50 |
+
- hr
|
51 |
+
- ru
|
52 |
+
- vi
|
53 |
+
- id
|
54 |
+
- sl
|
55 |
+
- cy
|
56 |
+
- ko
|
57 |
+
- nl
|
58 |
+
- ml
|
59 |
+
- tr
|
60 |
+
- fa
|
61 |
+
|
62 |
+
tags:
|
63 |
+
- nlp
|
64 |
---
|
65 |
|
66 |
**I have decided to release all auto-moderation models at once sometime in July. The curated datasets for training these models will be avaliable first.**
|
67 |
|
68 |
<br>
|
69 |
|
70 |
+
| | v2 | v1 |
|
71 |
+
|----------|----------|----------|
|
72 |
+
| Base Model | bert-base-multilingual-cased | nlpaueb/legal-bert-small-uncased |
|
73 |
+
| Base Tokenizer | bert-base-multilingual-cased | bert-base-multilingual-cased |
|
74 |
+
| Framework | PyTorch | TensorFlow |
|
75 |
+
| Dataset Size | 2.95M | 2.68M |
|
76 |
+
| Train Split | 80% English<br>20% English + 100% Multilingual | None |
|
77 |
+
| English Train Accuracy | 99.4% | N/A (≈98%) |
|
78 |
+
| Final Train Accuracy | 96.5% | 96.6% |
|
79 |
+
| Final Val Accuracy | 95.0% | 94.6% |
|
80 |
+
| Languages | 55 | N/A (≈35) |
|
81 |
+
| Hyperparameters | maxlen=208<br>batch_size=112<br>optimizer=Adam<br>learning_rate=1e-5<br>loss=BCEWithLogitsLoss() | maxlen=192<br>batch_size=16<br>optimizer=Adam<br>learning_rate=1e-5<br>loss="binary_crossentropy" |
|
82 |
+
| Training Stopped | 6/30/2023 | 9/05/2022 |
|
83 |
|
84 |
<br>
|
85 |
|
86 |
<br>
|
87 |
|
88 |
+
Models tested for v2: roberta, xlm-roberta, bert-small, bert-base-cased/uncased, bert-multilingual-cased/uncased, and alberta-large-v2.
|
89 |
+
From these models, I chose bert-multilingual-cased because of its higher resource efficiency and performance than the rest for this particular task.
|
|