Delete app.py
Browse files
app.py
DELETED
|
@@ -1,78 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import joblib
|
| 4 |
-
import numpy as np
|
| 5 |
-
from transformers import BertTokenizer, BertModel
|
| 6 |
-
|
| 7 |
-
# ----------------- 1. Setup Device -----------------
|
| 8 |
-
# HF Spaces (Free) usually runs on CPU, but this keeps it robust
|
| 9 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 10 |
-
print(f"Using device: {device}")
|
| 11 |
-
|
| 12 |
-
# ----------------- 2. Load BERT -----------------
|
| 13 |
-
print("Loading BERT model...")
|
| 14 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 15 |
-
bert_model = BertModel.from_pretrained('bert-base-uncased')
|
| 16 |
-
bert_model.to(device)
|
| 17 |
-
bert_model.eval()
|
| 18 |
-
|
| 19 |
-
# ----------------- 3. Load MLP + Scaler + LabelEncoder -----------------
|
| 20 |
-
# Ensure these files are uploaded to your HF Space Files tab!
|
| 21 |
-
print("Loading classification components...")
|
| 22 |
-
try:
|
| 23 |
-
mlp = joblib.load("mlp_query_classifier.joblib")
|
| 24 |
-
scaler = joblib.load("scaler_query_classifier.joblib")
|
| 25 |
-
le = joblib.load("label_encoder_query_classifier.joblib")
|
| 26 |
-
print("Loaded MLP, scaler, and label encoder.")
|
| 27 |
-
except FileNotFoundError as e:
|
| 28 |
-
print(f"Error: {e}. Please make sure you uploaded the .joblib files to the Space.")
|
| 29 |
-
|
| 30 |
-
# ----------------- 4. Embedding Function -----------------
|
| 31 |
-
def get_bert_embeddings(text_list):
|
| 32 |
-
inputs = tokenizer(
|
| 33 |
-
text_list,
|
| 34 |
-
padding=True,
|
| 35 |
-
truncation=True,
|
| 36 |
-
max_length=128,
|
| 37 |
-
return_tensors="pt"
|
| 38 |
-
).to(device)
|
| 39 |
-
|
| 40 |
-
with torch.no_grad():
|
| 41 |
-
outputs = bert_model(**inputs)
|
| 42 |
-
|
| 43 |
-
cls_embeddings = outputs.last_hidden_state[:, 0, :]
|
| 44 |
-
return cls_embeddings.cpu().numpy()
|
| 45 |
-
|
| 46 |
-
# ----------------- 5. Prediction Function -----------------
|
| 47 |
-
def predict_new_query(text):
|
| 48 |
-
# 1) BERT embedding
|
| 49 |
-
embedding = get_bert_embeddings([text])
|
| 50 |
-
|
| 51 |
-
# 2) scale with same scaler as training
|
| 52 |
-
embedding_scaled = scaler.transform(embedding)
|
| 53 |
-
|
| 54 |
-
# 3) MLP prediction -> class index
|
| 55 |
-
prediction_index = mlp.predict(embedding_scaled)[0]
|
| 56 |
-
|
| 57 |
-
# 4) map index back to string label
|
| 58 |
-
label = le.inverse_transform([prediction_index])[0]
|
| 59 |
-
|
| 60 |
-
# Optional: Get probability if your MLP supports it
|
| 61 |
-
try:
|
| 62 |
-
probs = mlp.predict_proba(embedding_scaled)[0]
|
| 63 |
-
confidence = np.max(probs)
|
| 64 |
-
return f"Label: {label} (Confidence: {confidence:.2f})"
|
| 65 |
-
except:
|
| 66 |
-
return f"Label: {label}"
|
| 67 |
-
|
| 68 |
-
# ----------------- 6. Launch Gradio Interface -----------------
|
| 69 |
-
# This creates the web UI
|
| 70 |
-
iface = gr.Interface(
|
| 71 |
-
fn=predict_new_query,
|
| 72 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
| 73 |
-
outputs="text",
|
| 74 |
-
title="BERT Query Classifier",
|
| 75 |
-
description="Enter a text query to classify it using the custom BERT+MLP model."
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|