Freakdivi commited on
Commit
c9dc1e5
·
verified ·
1 Parent(s): 09c190b

Upload inference.py

Browse files
Files changed (1) hide show
  1. inference.py +114 -0
inference.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # inference.py
2
+
3
+ import os
4
+ import torch
5
+ import joblib
6
+ import numpy as np
7
+ from transformers import BertTokenizer, BertModel
8
+
9
+
10
+ class EndpointHandler:
11
+ """
12
+ Custom handler for Hugging Face Inference Endpoints.
13
+
14
+ Expected input JSON:
15
+ {"inputs": "some text"}
16
+ or {"inputs": ["text 1", "text 2", ...]}
17
+
18
+ Output:
19
+ For single input:
20
+ {"label": "...", "confidence": 0.95}
21
+ For multiple:
22
+ [
23
+ {"label": "...", "confidence": 0.95},
24
+ {"label": "...", "confidence": 0.80},
25
+ ...
26
+ ]
27
+ """
28
+
29
+ def __init__(self, path: str = "."):
30
+ # 1. Device setup
31
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
+ print(f"[handler] Using device: {self.device}")
33
+
34
+ # 2. Load BERT
35
+ print("[handler] Loading BERT tokenizer and model...")
36
+ self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
37
+ self.bert_model = BertModel.from_pretrained("bert-base-uncased")
38
+ self.bert_model.to(self.device)
39
+ self.bert_model.eval()
40
+
41
+ # 3. Load MLP, scaler, label encoder
42
+ print("[handler] Loading classification components...")
43
+ mlp_path = os.path.join(path, "mlp_query_classifier.joblib")
44
+ scaler_path = os.path.join(path, "scaler_query_classifier.joblib")
45
+ le_path = os.path.join(path, "label_encoder_query_classifier.joblib")
46
+
47
+ self.mlp = joblib.load(mlp_path)
48
+ self.scaler = joblib.load(scaler_path)
49
+ self.le = joblib.load(le_path)
50
+
51
+ print("[handler] Loaded MLP, scaler, and label encoder.")
52
+
53
+ # ------------ Helper: BERT embeddings ------------
54
+ def get_bert_embeddings(self, text_list):
55
+ inputs = self.tokenizer(
56
+ text_list,
57
+ padding=True,
58
+ truncation=True,
59
+ max_length=128,
60
+ return_tensors="pt"
61
+ ).to(self.device)
62
+
63
+ with torch.no_grad():
64
+ outputs = self.bert_model(**inputs)
65
+
66
+ # CLS token embedding
67
+ cls_embeddings = outputs.last_hidden_state[:, 0, :]
68
+ return cls_embeddings.cpu().numpy()
69
+
70
+ # ------------ Main entry point ------------
71
+ def __call__(self, data):
72
+ """
73
+ data: dict with key "inputs"
74
+ """
75
+ if "inputs" not in data:
76
+ raise ValueError("Input JSON must have an 'inputs' field.")
77
+
78
+ texts = data["inputs"]
79
+
80
+ # Normalize to list
81
+ is_single = False
82
+ if isinstance(texts, str):
83
+ texts = [texts]
84
+ is_single = True
85
+
86
+ # 1) BERT embedding
87
+ embeddings = self.get_bert_embeddings(texts)
88
+
89
+ # 2) Scale with same scaler as training
90
+ embeddings_scaled = self.scaler.transform(embeddings)
91
+
92
+ # 3) Predict class indices
93
+ pred_indices = self.mlp.predict(embeddings_scaled)
94
+
95
+ # 4) Map indices to labels
96
+ labels = self.le.inverse_transform(pred_indices)
97
+
98
+ # 5) Optionally, get probabilities
99
+ results = []
100
+ for i, idx in enumerate(pred_indices):
101
+ label = labels[i]
102
+ try:
103
+ probs = self.mlp.predict_proba(embeddings_scaled[i : i + 1])[0]
104
+ confidence = float(np.max(probs))
105
+ except Exception:
106
+ confidence = None
107
+
108
+ result = {"label": label}
109
+ results.append(result)
110
+
111
+ # If the user sent a single string, return a single dict
112
+ if is_single:
113
+ return results[0]
114
+ return results