sd-laion-art / README.md
Fnatax75811ekpostacom's picture
End of training
f286fa4 verified
|
raw
history blame
1.26 kB
metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
datasets:
  - fantasyfish/laion-art
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
inference: true

Text-to-image finetuning - Fnatax75811ekpostacom/sd-laion-art

This pipeline was finetuned from stabilityai/stable-diffusion-2-1 on the fantasyfish/laion-art dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A man in a suit']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("Fnatax75811ekpostacom/sd-laion-art", torch_dtype=torch.float16)
prompt = "A man in a suit"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 100
  • Learning rate: 1e-05
  • Batch size: 16
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: bf16

More information on all the CLI arguments and the environment are available on your wandb run page.