Init
Browse files- README.md +410 -0
- config.json +33 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +746 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
README.md
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
quantized_by: FlorianJc
|
3 |
+
license: apache-2.0
|
4 |
+
inference: false
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
## Model infos:
|
9 |
+
[MegaBeam-Mistral-7B-300k](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.1.
|
10 |
+
|
11 |
+
|
12 |
+
# Original model README.md file:
|
13 |
+
|
14 |
+
|
15 |
+
# MegaBeam-Mistral-7B-300k Model
|
16 |
+
|
17 |
+
MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below:
|
18 |
+
|
19 |
+
|
20 |
+
|Model|Max context length| rope_theta| prompt template|
|
21 |
+
|----------|-------------:|------------:|------------:|
|
22 |
+
| [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)|
|
23 |
+
| MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE|
|
24 |
+
|
25 |
+
## Evaluations
|
26 |
+
|
27 |
+
**[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)**
|
28 |
+
|
29 |
+
_InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below.
|
30 |
+
|
31 |
+
| Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K |
|
32 |
+
| ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------|
|
33 |
+
| Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% |
|
34 |
+
| Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% |
|
35 |
+
| Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% |
|
36 |
+
| En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% |
|
37 |
+
| En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% |
|
38 |
+
| En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% |
|
39 |
+
| En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% |
|
40 |
+
| Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% |
|
41 |
+
| Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% |
|
42 |
+
| Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
43 |
+
| Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
44 |
+
| Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% |
|
45 |
+
| **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% |
|
46 |
+
|
47 |
+
The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench)))
|
48 |
+
| Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description |
|
49 |
+
| -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- |
|
50 |
+
| En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. |
|
51 |
+
| En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. |
|
52 |
+
| En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. |
|
53 |
+
| En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. |
|
54 |
+
| Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. |
|
55 |
+
| Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). |
|
56 |
+
| Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. |
|
57 |
+
| Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. |
|
58 |
+
| Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. |
|
59 |
+
| Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. |
|
60 |
+
| Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. |
|
61 |
+
| Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. |
|
62 |
+
|
63 |
+
|
64 |
+
## Serve MegaBeam-Mistral-7B-300k on EC2 instances ##
|
65 |
+
On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/).
|
66 |
+
|
67 |
+
### Start the server
|
68 |
+
```shell
|
69 |
+
python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8
|
70 |
+
```
|
71 |
+
**Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU).
|
72 |
+
|
73 |
+
On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process.
|
74 |
+
|
75 |
+
### Run the client
|
76 |
+
```python
|
77 |
+
from openai import OpenAI
|
78 |
+
|
79 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
80 |
+
openai_api_key = "EMPTY"
|
81 |
+
openai_api_base = "http://localhost:8000/v1"
|
82 |
+
|
83 |
+
client = OpenAI(
|
84 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
85 |
+
api_key=openai_api_key,
|
86 |
+
base_url=openai_api_base,
|
87 |
+
)
|
88 |
+
|
89 |
+
models = client.models.list()
|
90 |
+
model = models.data[0].id
|
91 |
+
|
92 |
+
chat_completion = client.chat.completions.create(
|
93 |
+
messages = [
|
94 |
+
{"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
|
95 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
96 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
|
97 |
+
],
|
98 |
+
model=model,
|
99 |
+
)
|
100 |
+
|
101 |
+
print("Chat completion results:")
|
102 |
+
print(chat_completion)
|
103 |
+
```
|
104 |
+
|
105 |
+
### Deploy the model on a SageMaker Endpoint ###
|
106 |
+
To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html).
|
107 |
+
|
108 |
+
Run the following Python code in a SageMaker notebook (with each block running in a separate cell)
|
109 |
+
|
110 |
+
```python
|
111 |
+
import sagemaker
|
112 |
+
from sagemaker import Model, image_uris, serializers, deserializers
|
113 |
+
|
114 |
+
sagemaker_session = sagemaker.Session()
|
115 |
+
region = sagemaker_session.boto_region_name
|
116 |
+
role = sagemaker.get_execution_role()
|
117 |
+
|
118 |
+
%%writefile serving.properties
|
119 |
+
engine=Python
|
120 |
+
option.model_id=amazon/MegaBeam-Mistral-7B-300k
|
121 |
+
option.dtype=bf16
|
122 |
+
option.task=text-generation
|
123 |
+
option.rolling_batch=vllm
|
124 |
+
option.tensor_parallel_degree=8
|
125 |
+
option.device_map=auto
|
126 |
+
|
127 |
+
%%sh
|
128 |
+
mkdir mymodel
|
129 |
+
mv serving.properties mymodel/
|
130 |
+
tar czvf mymodel.tar.gz mymodel/
|
131 |
+
rm -rf mymodel
|
132 |
+
|
133 |
+
image_uri = image_uris.retrieve(
|
134 |
+
framework="djl-deepspeed",
|
135 |
+
region=region,
|
136 |
+
version="0.27.0"
|
137 |
+
)
|
138 |
+
|
139 |
+
s3_code_prefix = "megaBeam-mistral-7b-300k/code"
|
140 |
+
bucket = sagemaker_session.default_bucket() # bucket to house artifacts
|
141 |
+
code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
|
142 |
+
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
|
143 |
+
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
|
144 |
+
|
145 |
+
instance_type = "ml.g5.48xlarge"
|
146 |
+
endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k")
|
147 |
+
model.deploy(initial_instance_count=1,
|
148 |
+
instance_type=instance_type,
|
149 |
+
endpoint_name=endpoint_name
|
150 |
+
)
|
151 |
+
|
152 |
+
# our requests and responses will be in json format so we specify the serializer and the deserializer
|
153 |
+
predictor = sagemaker.Predictor(
|
154 |
+
endpoint_name=endpoint_name,
|
155 |
+
sagemaker_session=sagemaker_session,
|
156 |
+
serializer=serializers.JSONSerializer(),
|
157 |
+
)
|
158 |
+
|
159 |
+
# test the endpoint
|
160 |
+
input_str = """<s>[INST] What is your favourite condiment? [/INST]
|
161 |
+
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
162 |
+
[INST] Do you have mayonnaise recipes? [/INST]"""
|
163 |
+
predictor.predict(
|
164 |
+
{"inputs": input_str, "parameters": {"max_new_tokens": 75}}
|
165 |
+
)
|
166 |
+
|
167 |
+
```
|
168 |
+
|
169 |
+
### Invoke the model on a SageMaker Endpoint ###
|
170 |
+
To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example:
|
171 |
+
|
172 |
+
```python
|
173 |
+
import boto3
|
174 |
+
import json
|
175 |
+
|
176 |
+
def call_endpoint(text:str, endpoint_name:str):
|
177 |
+
client = boto3.client("sagemaker-runtime")
|
178 |
+
|
179 |
+
parameters = {
|
180 |
+
"max_new_tokens": 450,
|
181 |
+
"do_sample": True,
|
182 |
+
"temperature": 0.7,
|
183 |
+
}
|
184 |
+
|
185 |
+
payload = {"inputs": text, "parameters": parameters}
|
186 |
+
|
187 |
+
response = client.invoke_endpoint(
|
188 |
+
EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json"
|
189 |
+
)
|
190 |
+
|
191 |
+
output = json.loads(response["Body"].read().decode())
|
192 |
+
|
193 |
+
result = output["generated_text"]
|
194 |
+
return result
|
195 |
+
|
196 |
+
# please insert your long prompt/document content here
|
197 |
+
prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]"""
|
198 |
+
|
199 |
+
#print(prompt)
|
200 |
+
endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name
|
201 |
+
result = call_endpoint(prompt, endpoint_name)
|
202 |
+
print(result)
|
203 |
+
```
|
204 |
+
|
205 |
+
|
206 |
+
## Limitations ##
|
207 |
+
Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
|
208 |
+
|
209 |
+
## The AWS Contributors ##
|
210 |
+
Chen Wu, Yin Song, Verdi March, Eden Duthi---
|
211 |
+
license: apache-2.0
|
212 |
+
inference: false
|
213 |
+
---
|
214 |
+
|
215 |
+
# MegaBeam-Mistral-7B-300k Model
|
216 |
+
|
217 |
+
MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below:
|
218 |
+
|
219 |
+
|
220 |
+
|Model|Max context length| rope_theta| prompt template|
|
221 |
+
|----------|-------------:|------------:|------------:|
|
222 |
+
| [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)|
|
223 |
+
| MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE|
|
224 |
+
|
225 |
+
## Evaluations
|
226 |
+
|
227 |
+
**[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)**
|
228 |
+
|
229 |
+
_InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below.
|
230 |
+
|
231 |
+
| Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K |
|
232 |
+
| ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------|
|
233 |
+
| Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% |
|
234 |
+
| Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% |
|
235 |
+
| Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% |
|
236 |
+
| En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% |
|
237 |
+
| En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% |
|
238 |
+
| En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% |
|
239 |
+
| En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% |
|
240 |
+
| Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% |
|
241 |
+
| Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% |
|
242 |
+
| Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
243 |
+
| Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
244 |
+
| Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% |
|
245 |
+
| **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% |
|
246 |
+
|
247 |
+
The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench)))
|
248 |
+
| Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description |
|
249 |
+
| -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- |
|
250 |
+
| En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. |
|
251 |
+
| En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. |
|
252 |
+
| En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. |
|
253 |
+
| En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. |
|
254 |
+
| Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. |
|
255 |
+
| Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). |
|
256 |
+
| Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. |
|
257 |
+
| Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. |
|
258 |
+
| Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. |
|
259 |
+
| Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. |
|
260 |
+
| Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. |
|
261 |
+
| Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. |
|
262 |
+
|
263 |
+
|
264 |
+
## Serve MegaBeam-Mistral-7B-300k on EC2 instances ##
|
265 |
+
On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/).
|
266 |
+
|
267 |
+
### Start the server
|
268 |
+
```shell
|
269 |
+
python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8
|
270 |
+
```
|
271 |
+
**Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU).
|
272 |
+
|
273 |
+
On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process.
|
274 |
+
|
275 |
+
### Run the client
|
276 |
+
```python
|
277 |
+
from openai import OpenAI
|
278 |
+
|
279 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
280 |
+
openai_api_key = "EMPTY"
|
281 |
+
openai_api_base = "http://localhost:8000/v1"
|
282 |
+
|
283 |
+
client = OpenAI(
|
284 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
285 |
+
api_key=openai_api_key,
|
286 |
+
base_url=openai_api_base,
|
287 |
+
)
|
288 |
+
|
289 |
+
models = client.models.list()
|
290 |
+
model = models.data[0].id
|
291 |
+
|
292 |
+
chat_completion = client.chat.completions.create(
|
293 |
+
messages = [
|
294 |
+
{"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
|
295 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
296 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
|
297 |
+
],
|
298 |
+
model=model,
|
299 |
+
)
|
300 |
+
|
301 |
+
print("Chat completion results:")
|
302 |
+
print(chat_completion)
|
303 |
+
```
|
304 |
+
|
305 |
+
### Deploy the model on a SageMaker Endpoint ###
|
306 |
+
To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html).
|
307 |
+
|
308 |
+
Run the following Python code in a SageMaker notebook (with each block running in a separate cell)
|
309 |
+
|
310 |
+
```python
|
311 |
+
import sagemaker
|
312 |
+
from sagemaker import Model, image_uris, serializers, deserializers
|
313 |
+
|
314 |
+
sagemaker_session = sagemaker.Session()
|
315 |
+
region = sagemaker_session.boto_region_name
|
316 |
+
role = sagemaker.get_execution_role()
|
317 |
+
|
318 |
+
%%writefile serving.properties
|
319 |
+
engine=Python
|
320 |
+
option.model_id=amazon/MegaBeam-Mistral-7B-300k
|
321 |
+
option.dtype=bf16
|
322 |
+
option.task=text-generation
|
323 |
+
option.rolling_batch=vllm
|
324 |
+
option.tensor_parallel_degree=8
|
325 |
+
option.device_map=auto
|
326 |
+
|
327 |
+
%%sh
|
328 |
+
mkdir mymodel
|
329 |
+
mv serving.properties mymodel/
|
330 |
+
tar czvf mymodel.tar.gz mymodel/
|
331 |
+
rm -rf mymodel
|
332 |
+
|
333 |
+
image_uri = image_uris.retrieve(
|
334 |
+
framework="djl-deepspeed",
|
335 |
+
region=region,
|
336 |
+
version="0.27.0"
|
337 |
+
)
|
338 |
+
|
339 |
+
s3_code_prefix = "megaBeam-mistral-7b-300k/code"
|
340 |
+
bucket = sagemaker_session.default_bucket() # bucket to house artifacts
|
341 |
+
code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
|
342 |
+
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
|
343 |
+
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
|
344 |
+
|
345 |
+
instance_type = "ml.g5.48xlarge"
|
346 |
+
endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k")
|
347 |
+
model.deploy(initial_instance_count=1,
|
348 |
+
instance_type=instance_type,
|
349 |
+
endpoint_name=endpoint_name
|
350 |
+
)
|
351 |
+
|
352 |
+
# our requests and responses will be in json format so we specify the serializer and the deserializer
|
353 |
+
predictor = sagemaker.Predictor(
|
354 |
+
endpoint_name=endpoint_name,
|
355 |
+
sagemaker_session=sagemaker_session,
|
356 |
+
serializer=serializers.JSONSerializer(),
|
357 |
+
)
|
358 |
+
|
359 |
+
# test the endpoint
|
360 |
+
input_str = """<s>[INST] What is your favourite condiment? [/INST]
|
361 |
+
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
362 |
+
[INST] Do you have mayonnaise recipes? [/INST]"""
|
363 |
+
predictor.predict(
|
364 |
+
{"inputs": input_str, "parameters": {"max_new_tokens": 75}}
|
365 |
+
)
|
366 |
+
|
367 |
+
```
|
368 |
+
|
369 |
+
### Invoke the model on a SageMaker Endpoint ###
|
370 |
+
To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example:
|
371 |
+
|
372 |
+
```python
|
373 |
+
import boto3
|
374 |
+
import json
|
375 |
+
|
376 |
+
def call_endpoint(text:str, endpoint_name:str):
|
377 |
+
client = boto3.client("sagemaker-runtime")
|
378 |
+
|
379 |
+
parameters = {
|
380 |
+
"max_new_tokens": 450,
|
381 |
+
"do_sample": True,
|
382 |
+
"temperature": 0.7,
|
383 |
+
}
|
384 |
+
|
385 |
+
payload = {"inputs": text, "parameters": parameters}
|
386 |
+
|
387 |
+
response = client.invoke_endpoint(
|
388 |
+
EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json"
|
389 |
+
)
|
390 |
+
|
391 |
+
output = json.loads(response["Body"].read().decode())
|
392 |
+
|
393 |
+
result = output["generated_text"]
|
394 |
+
return result
|
395 |
+
|
396 |
+
# please insert your long prompt/document content here
|
397 |
+
prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]"""
|
398 |
+
|
399 |
+
#print(prompt)
|
400 |
+
endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name
|
401 |
+
result = call_endpoint(prompt, endpoint_name)
|
402 |
+
print(result)
|
403 |
+
```
|
404 |
+
|
405 |
+
|
406 |
+
## Limitations ##
|
407 |
+
Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
|
408 |
+
|
409 |
+
## The AWS Contributors ##
|
410 |
+
Chen Wu, Yin Song, Verdi March, Eden Duthie
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "amazon/MegaBeam-Mistral-7B-300k",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 288800,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"quantization_config": {
|
19 |
+
"activation_scheme": "static",
|
20 |
+
"ignored_layers": [
|
21 |
+
"lm_head"
|
22 |
+
],
|
23 |
+
"quant_method": "fp8"
|
24 |
+
},
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_theta": 25000000.0,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "float16",
|
30 |
+
"transformers_version": "4.42.3",
|
31 |
+
"use_cache": false,
|
32 |
+
"vocab_size": 32000
|
33 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.42.3"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b855f18e3f53965a71236bd703c5cd639cefd39fa1c9986cbb2d0d1fb29fbda
|
3 |
+
size 4943385232
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c9963f1644f9b253e2b50912947db42a0513cad6b0caf73b0d80e46b4449558
|
3 |
+
size 2560836920
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7504144128
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.0.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.0.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.0.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.0.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.0.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.1.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.1.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.1.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.1.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.1.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.1.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.1.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.1.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.1.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.10.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.10.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.10.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.10.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.10.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.10.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.10.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.10.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.10.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.10.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.10.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.10.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.10.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.10.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.11.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.11.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.11.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.11.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.11.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.11.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.11.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.11.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.11.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.11.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.11.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.11.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.11.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.11.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.12.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.12.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.12.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.12.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.12.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.12.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.12.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.12.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.12.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.12.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.12.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.12.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.12.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.12.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.13.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.13.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.13.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.13.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.13.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.13.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.13.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.13.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.13.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.13.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.13.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.13.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.13.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.13.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.14.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.14.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.14.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.14.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.14.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.14.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.14.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.14.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.14.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.14.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.14.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.14.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.14.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.14.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.15.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.15.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.15.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.15.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.15.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.15.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.15.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.15.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.15.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.15.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.15.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.15.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.15.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.15.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.16.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.16.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.16.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.16.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.16.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.16.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.16.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.16.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.16.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.16.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.16.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.16.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.16.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.16.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.17.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.17.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.17.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.17.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.17.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.17.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.17.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.17.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.17.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.17.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.17.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.17.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.17.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.17.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.18.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.18.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.18.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.18.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.18.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.18.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.18.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.18.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.18.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.18.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.18.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.18.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.18.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.18.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.19.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.19.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.19.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.19.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.19.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.19.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.19.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.19.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.19.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.19.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.19.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.19.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.19.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.19.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.2.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.2.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.2.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.2.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.2.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.2.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.2.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.2.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.2.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.2.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.2.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.2.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.2.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.2.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.20.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.20.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.20.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.20.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.20.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.20.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.20.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.20.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.20.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.20.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.20.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.20.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.20.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.20.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.21.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.21.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.21.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.21.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.21.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.21.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.21.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.21.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.21.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.21.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.21.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
348 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"model.layers.21.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
350 |
+
"model.layers.21.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
351 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.21.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.22.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.22.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.22.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.22.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.22.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.22.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.22.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.22.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.22.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.22.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.22.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.22.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.22.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.22.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
376 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
377 |
+
"model.layers.23.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
378 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
379 |
+
"model.layers.23.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
380 |
+
"model.layers.23.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
381 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
382 |
+
"model.layers.23.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
383 |
+
"model.layers.23.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
384 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
385 |
+
"model.layers.23.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
386 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
387 |
+
"model.layers.23.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
388 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
389 |
+
"model.layers.23.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
390 |
+
"model.layers.23.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
391 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
392 |
+
"model.layers.23.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
393 |
+
"model.layers.23.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
394 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
395 |
+
"model.layers.23.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
396 |
+
"model.layers.23.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
397 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
398 |
+
"model.layers.23.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
399 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
400 |
+
"model.layers.24.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
401 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
402 |
+
"model.layers.24.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
403 |
+
"model.layers.24.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
404 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
405 |
+
"model.layers.24.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
406 |
+
"model.layers.24.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
407 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
408 |
+
"model.layers.24.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
409 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
410 |
+
"model.layers.24.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
411 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
412 |
+
"model.layers.24.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
413 |
+
"model.layers.24.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
414 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
415 |
+
"model.layers.24.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
416 |
+
"model.layers.24.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
417 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
418 |
+
"model.layers.24.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
419 |
+
"model.layers.24.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
420 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
421 |
+
"model.layers.24.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
422 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
423 |
+
"model.layers.25.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
424 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
425 |
+
"model.layers.25.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
426 |
+
"model.layers.25.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
427 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
428 |
+
"model.layers.25.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
429 |
+
"model.layers.25.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
430 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
431 |
+
"model.layers.25.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
432 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
433 |
+
"model.layers.25.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
434 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
435 |
+
"model.layers.25.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
436 |
+
"model.layers.25.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
437 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
438 |
+
"model.layers.25.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
439 |
+
"model.layers.25.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
440 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"model.layers.25.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
442 |
+
"model.layers.25.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
443 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
444 |
+
"model.layers.25.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
445 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
446 |
+
"model.layers.26.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
447 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
448 |
+
"model.layers.26.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
449 |
+
"model.layers.26.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
450 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
451 |
+
"model.layers.26.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
452 |
+
"model.layers.26.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
453 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
454 |
+
"model.layers.26.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
455 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
456 |
+
"model.layers.26.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
457 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
458 |
+
"model.layers.26.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
459 |
+
"model.layers.26.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
460 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
461 |
+
"model.layers.26.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
462 |
+
"model.layers.26.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
463 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
464 |
+
"model.layers.26.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
465 |
+
"model.layers.26.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
466 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
467 |
+
"model.layers.26.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
468 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
469 |
+
"model.layers.27.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
470 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
471 |
+
"model.layers.27.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
472 |
+
"model.layers.27.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
473 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
474 |
+
"model.layers.27.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
475 |
+
"model.layers.27.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
476 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
477 |
+
"model.layers.27.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
478 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
479 |
+
"model.layers.27.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
480 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
481 |
+
"model.layers.27.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
482 |
+
"model.layers.27.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
483 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
484 |
+
"model.layers.27.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
485 |
+
"model.layers.27.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
486 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
487 |
+
"model.layers.27.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
488 |
+
"model.layers.27.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
489 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
490 |
+
"model.layers.27.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
491 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
492 |
+
"model.layers.28.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
493 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
494 |
+
"model.layers.28.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
495 |
+
"model.layers.28.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
496 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
497 |
+
"model.layers.28.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
498 |
+
"model.layers.28.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
499 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
500 |
+
"model.layers.28.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
501 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
502 |
+
"model.layers.28.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
503 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
504 |
+
"model.layers.28.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
505 |
+
"model.layers.28.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
506 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
507 |
+
"model.layers.28.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
508 |
+
"model.layers.28.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
509 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
510 |
+
"model.layers.28.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
511 |
+
"model.layers.28.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
512 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
513 |
+
"model.layers.28.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
514 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
515 |
+
"model.layers.29.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
516 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
517 |
+
"model.layers.29.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
518 |
+
"model.layers.29.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
519 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
520 |
+
"model.layers.29.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
521 |
+
"model.layers.29.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
522 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
523 |
+
"model.layers.29.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
524 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
525 |
+
"model.layers.29.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
526 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
527 |
+
"model.layers.29.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
528 |
+
"model.layers.29.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
529 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
530 |
+
"model.layers.29.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
531 |
+
"model.layers.29.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
532 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
533 |
+
"model.layers.29.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
534 |
+
"model.layers.29.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
535 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
536 |
+
"model.layers.29.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
537 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
538 |
+
"model.layers.3.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
539 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
540 |
+
"model.layers.3.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
541 |
+
"model.layers.3.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
542 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
543 |
+
"model.layers.3.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
544 |
+
"model.layers.3.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
545 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
546 |
+
"model.layers.3.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
547 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
548 |
+
"model.layers.3.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
549 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
550 |
+
"model.layers.3.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
551 |
+
"model.layers.3.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
552 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
553 |
+
"model.layers.3.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
554 |
+
"model.layers.3.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
555 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
556 |
+
"model.layers.3.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
557 |
+
"model.layers.3.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
558 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
559 |
+
"model.layers.3.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
560 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
561 |
+
"model.layers.30.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
562 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
563 |
+
"model.layers.30.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
564 |
+
"model.layers.30.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
565 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
566 |
+
"model.layers.30.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
567 |
+
"model.layers.30.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
568 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
569 |
+
"model.layers.30.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
570 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
571 |
+
"model.layers.30.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
572 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
573 |
+
"model.layers.30.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
574 |
+
"model.layers.30.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
575 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
576 |
+
"model.layers.30.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
577 |
+
"model.layers.30.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
578 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
579 |
+
"model.layers.30.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
580 |
+
"model.layers.30.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
581 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
582 |
+
"model.layers.30.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
583 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
584 |
+
"model.layers.31.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
585 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
586 |
+
"model.layers.31.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
587 |
+
"model.layers.31.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
588 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
589 |
+
"model.layers.31.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
590 |
+
"model.layers.31.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
591 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
592 |
+
"model.layers.31.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
593 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
594 |
+
"model.layers.31.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
595 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
596 |
+
"model.layers.31.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
597 |
+
"model.layers.31.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
598 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
599 |
+
"model.layers.31.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
600 |
+
"model.layers.31.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
601 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
602 |
+
"model.layers.31.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
603 |
+
"model.layers.31.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
604 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
605 |
+
"model.layers.31.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
606 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
607 |
+
"model.layers.4.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
608 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
609 |
+
"model.layers.4.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
610 |
+
"model.layers.4.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
611 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
612 |
+
"model.layers.4.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
613 |
+
"model.layers.4.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
614 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
615 |
+
"model.layers.4.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
616 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
617 |
+
"model.layers.4.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
618 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
619 |
+
"model.layers.4.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
620 |
+
"model.layers.4.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
621 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
622 |
+
"model.layers.4.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
623 |
+
"model.layers.4.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
624 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
625 |
+
"model.layers.4.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
626 |
+
"model.layers.4.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
627 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
628 |
+
"model.layers.4.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
629 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
630 |
+
"model.layers.5.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
631 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
632 |
+
"model.layers.5.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
633 |
+
"model.layers.5.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
634 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
635 |
+
"model.layers.5.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
636 |
+
"model.layers.5.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
637 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
638 |
+
"model.layers.5.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
639 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
640 |
+
"model.layers.5.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
641 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
642 |
+
"model.layers.5.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
643 |
+
"model.layers.5.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
644 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
645 |
+
"model.layers.5.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
646 |
+
"model.layers.5.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
647 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
648 |
+
"model.layers.5.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
649 |
+
"model.layers.5.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
650 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
651 |
+
"model.layers.5.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
652 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
653 |
+
"model.layers.6.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
654 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
655 |
+
"model.layers.6.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
656 |
+
"model.layers.6.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
657 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
658 |
+
"model.layers.6.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
659 |
+
"model.layers.6.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
660 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
661 |
+
"model.layers.6.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
662 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
663 |
+
"model.layers.6.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
664 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
665 |
+
"model.layers.6.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
666 |
+
"model.layers.6.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
667 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
668 |
+
"model.layers.6.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
669 |
+
"model.layers.6.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
670 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
671 |
+
"model.layers.6.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
672 |
+
"model.layers.6.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
673 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
674 |
+
"model.layers.6.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
675 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
676 |
+
"model.layers.7.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
677 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
678 |
+
"model.layers.7.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
679 |
+
"model.layers.7.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
680 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
681 |
+
"model.layers.7.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
682 |
+
"model.layers.7.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
683 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
684 |
+
"model.layers.7.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
685 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
686 |
+
"model.layers.7.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
687 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
688 |
+
"model.layers.7.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
689 |
+
"model.layers.7.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
690 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
691 |
+
"model.layers.7.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
692 |
+
"model.layers.7.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
693 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
694 |
+
"model.layers.7.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
695 |
+
"model.layers.7.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
696 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
697 |
+
"model.layers.7.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
698 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
699 |
+
"model.layers.8.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
700 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
701 |
+
"model.layers.8.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
702 |
+
"model.layers.8.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
703 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
704 |
+
"model.layers.8.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
705 |
+
"model.layers.8.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
706 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
707 |
+
"model.layers.8.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
708 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
709 |
+
"model.layers.8.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
710 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
711 |
+
"model.layers.8.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
712 |
+
"model.layers.8.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
713 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
714 |
+
"model.layers.8.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
715 |
+
"model.layers.8.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
716 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
717 |
+
"model.layers.8.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
718 |
+
"model.layers.8.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
719 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
720 |
+
"model.layers.8.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
721 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
722 |
+
"model.layers.9.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
723 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
724 |
+
"model.layers.9.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
725 |
+
"model.layers.9.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
726 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
727 |
+
"model.layers.9.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
728 |
+
"model.layers.9.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
729 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
730 |
+
"model.layers.9.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
731 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
732 |
+
"model.layers.9.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
733 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
734 |
+
"model.layers.9.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
735 |
+
"model.layers.9.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
736 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
737 |
+
"model.layers.9.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
738 |
+
"model.layers.9.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
739 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
740 |
+
"model.layers.9.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
741 |
+
"model.layers.9.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
742 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
743 |
+
"model.layers.9.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
744 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
745 |
+
}
|
746 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": true,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": null,
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|