metadata
language:
- fi
license: apache-2.0
tags:
- whisper-event
- finnish
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
- cer
model-index:
- name: Whisper Large V3 Finnish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fi
split: test
args: fi
metrics:
- name: Wer
type: wer
value: 8.23
- name: Cer
type: cer
value: 1.43
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: FLEURS
type: google/fleurs
config: fi_fi
split: test
args: fi_fi
metrics:
- name: Wer
type: wer
value: 8.21
- name: Cer
type: cer
value: 3.23
This is our improved Whisper model that is now finetuned from OpenAI Whisper Large V3 We improve from our finetuned V2 model: CV11 WER 10.42 --> 8.23 Fleurs WER 10.20 --> 8.21
Original Whisper Large V3
CV11
- WER: 14.81
- WER NORMALIZED: 10.82
- CER: 2.7
- CER NORMALIZED: 2.07
Fleurs
- WER: 12.04
- WER NORMALIZED: 9.63
- CER: 2.48
- CER NORMALIZED: 3.64
After Finetuning V3:
@14000 steps
CV11
- WER: 11.36
- WER NORMALIZED: 8.31
- CER: 1.93
- CER NORMALIZED: 1.48
Fleurs
- WER: 10.2
- WER NORMALIZED: 8.56
- CER: 2.26
- CER NORMALIZED: 3.54
@32000 steps
CV11
- WER: 11.47
- WER NORMALIZED: 8.23
- CER: 1.91
- CER NORMALIZED: 1.43
Fleurs
- WER: 10.1
- WER NORMALIZED: 8.21
- CER: 2.2
- CER NORMALIZED: 3.23