Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
llama-3b-finnish / EasyLM /jax_utils.py
aapot
Update EasyLM
440e354
raw
history blame
13 kB
import os
import math
from typing import Any, Mapping, Text, Tuple, Union, NamedTuple
from functools import partial
import re
import dataclasses
import random
from ml_collections import ConfigDict
from ml_collections.config_dict.config_dict import placeholder
import flax
import jax
import jax.numpy as jnp
from jax.sharding import PartitionSpec as PS
from jax.sharding import Mesh
from jax.experimental import mesh_utils
from jax.experimental.pjit import with_sharding_constraint as _with_sharding_constraint
from jax.experimental.pjit import pjit
from jax.interpreters import pxla
import numpy as np
from transformers import FlaxLogitsWarper
class JaxRNG(object):
""" A convenient stateful Jax RNG wrapper. Can be used to wrap RNG inside
pure function.
"""
@classmethod
def from_seed(cls, seed):
return cls(jax.random.PRNGKey(seed))
def __init__(self, rng):
self.rng = rng
def __call__(self, keys=None):
if keys is None:
self.rng, split_rng = jax.random.split(self.rng)
return split_rng
elif isinstance(keys, int):
split_rngs = jax.random.split(self.rng, num=keys + 1)
self.rng = split_rngs[0]
return tuple(split_rngs[1:])
else:
split_rngs = jax.random.split(self.rng, num=len(keys) + 1)
self.rng = split_rngs[0]
return {key: val for key, val in zip(keys, split_rngs[1:])}
class JaxDistributedConfig(object):
""" Utility class for initializing JAX distributed. """
@staticmethod
def get_default_config(updates=None):
config = ConfigDict()
config.initialize_jax_distributed = False
config.coordinator_address = placeholder(str)
config.num_processes = placeholder(int)
config.process_id = placeholder(int)
config.local_device_ids = placeholder(str)
if updates is not None:
config.update(ConfigDict(updates).copy_and_resolve_references())
return config
@classmethod
def initialize(cls, config):
config = cls.get_default_config(config)
if config.initialize_jax_distributed:
if config.local_device_ids is not None:
local_device_ids = [int(x) for x in config.local_device_ids.split(',')]
else:
local_device_ids = None
jax.distributed.initialize(
coordinator_address=config.coordinator_address,
num_processes=config.num_processes,
process_id=config.process_id,
local_device_ids=local_device_ids,
)
class FlaxTemperatureLogitsWarper(FlaxLogitsWarper):
""" JIT traceable version of FlaxLogitsWarper that performs temperature scaling."""
def __init__(self, temperature):
self.temperature = temperature
def __call__(self, input_ids, scores, cur_len):
return scores / jnp.clip(self.temperature, a_min=1e-8)
def make_shard_and_gather_fns(partition_specs, dtype_specs=None):
""" Create pytree of sharding and gathering functions from pytree of
partition specs.
"""
float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64)
def make_to_dtype_fn(dtype_spec):
def to_dtype(tensor):
if dtype_specs in float_dtypes and getattr(tensor, 'dtype', None) in float_dtypes:
# Convert all float tensors to the same dtype
return tensor.astype(dtype_specs)
elif hasattr(dtype_spec, 'dtype') and hasattr(tensor, 'dtype'):
return tensor.astype(dtype_spec.dtype)
return tensor
return to_dtype
def make_shard_fn(partition_spec, dtype_spec=None):
jax_shard_function = pjit(
make_to_dtype_fn(dtype_spec),
in_shardings=None,
out_shardings=partition_spec
)
def shard_fn(tensor):
return jax_shard_function(tensor).block_until_ready()
return shard_fn
def make_gather_fn(partition_spec, dtype_spec=None):
jax_gather_fn = pjit(
make_to_dtype_fn(dtype_spec),
in_shardings=partition_spec,
out_shardings=None
)
def gather_fn(tensor):
return jax.device_get(jax_gather_fn(tensor))
return gather_fn
if dtype_specs is None or dtype_specs in float_dtypes:
shard_fns = jax.tree_util.tree_map(make_shard_fn, partition_specs)
gather_fns = jax.tree_util.tree_map(make_gather_fn, partition_specs)
else:
shard_fns = jax.tree_util.tree_map(
make_shard_fn, partition_specs, dtype_specs
)
gather_fns = jax.tree_util.tree_map(
make_gather_fn, partition_specs, dtype_specs
)
return shard_fns, gather_fns
def set_random_seed(seed):
np.random.seed(seed)
random.seed(seed)
init_rng(seed)
def get_jax_mesh(axis_dims, names):
if axis_dims.startswith('!'):
# Allow splitting a physical mesh axis if needed
mesh_axis_splitting = True
axis_dims = axis_dims[1:]
else:
mesh_axis_splitting = False
if ':' in axis_dims:
dims = []
dim_names = []
for axis in axis_dims.split(','):
name, dim = axis.split(':')
assert name in names
dims.append(int(dim))
dim_names.append(name)
assert(set(dim_names) == set(names))
else:
dims = [int(x) for x in axis_dims.split(',')]
dim_names = names
assert len(dims) == len(names)
mesh_shape = np.arange(jax.device_count()).reshape(dims).shape
if mesh_axis_splitting:
physical_mesh = np.array(jax.devices()).reshape(mesh_shape)
else:
physical_mesh = mesh_utils.create_device_mesh(mesh_shape)
return Mesh(physical_mesh, dim_names)
def names_in_current_mesh(*names):
""" Check if current mesh axes contain these names. """
mesh_axis_names = pxla.thread_resources.env.physical_mesh.axis_names
return set(names) <= set(mesh_axis_names)
def get_names_from_parition_spec(partition_specs):
""" Return axis names from partition specs. """
names = set()
if isinstance(partition_specs, dict):
partition_specs = partition_specs.values()
for item in partition_specs:
if item is None:
continue
elif isinstance(item, str):
names.add(item)
else:
names.update(get_names_from_parition_spec(item))
return list(names)
def with_sharding_constraint(x, partition_specs):
""" A smarter version of with_sharding_constraint that only applies the
constraint if the current mesh contains the axes in the partition specs.
"""
axis_names = get_names_from_parition_spec(partition_specs)
if names_in_current_mesh(*axis_names):
x = _with_sharding_constraint(x, partition_specs)
return x
def wrap_function_with_rng(rng):
""" To be used as decorator, automatically bookkeep a RNG for the wrapped function. """
def wrap_function(function):
def wrapped(*args, **kwargs):
nonlocal rng
rng, split_rng = jax.random.split(rng)
return function(split_rng, *args, **kwargs)
return wrapped
return wrap_function
def init_rng(seed):
global jax_utils_rng
jax_utils_rng = JaxRNG.from_seed(seed)
def next_rng(*args, **kwargs):
global jax_utils_rng
return jax_utils_rng(*args, **kwargs)
def get_metrics(metrics, unreplicate=False, stack=False):
if unreplicate:
metrics = flax.jax_utils.unreplicate(metrics)
metrics = jax.device_get(metrics)
if stack:
return jax.tree_map(lambda *args: np.stack(args), *metrics)
else:
return {key: float(val) for key, val in metrics.items()}
def mse_loss(val, target, valid=None):
if valid is None:
valid = jnp.ones((*target.shape[:2], 1))
valid = valid.astype(jnp.float32)
loss = jnp.mean(
jnp.where(
valid > 0.0,
jnp.square(val - target),
0.0
)
)
return loss
def cross_entropy_loss_and_accuracy(logits, tokens, valid=None):
if valid is None:
valid = jnp.ones(tokens.shape[:2])
valid = valid.astype(jnp.float32)
valid_text_length = jnp.maximum(jnp.sum(valid, axis=-1), 1e-10)
logits = logits.astype(jnp.float32) # for numerical stability
token_log_prob = jnp.squeeze(
jnp.take_along_axis(
jax.nn.log_softmax(logits, axis=-1),
jnp.expand_dims(tokens, -1),
axis=-1,
),
-1,
)
token_log_prob = jnp.where(valid > 0.0, token_log_prob, jnp.array(0.0))
loss = -jnp.mean(jnp.sum(token_log_prob, axis=-1) / valid_text_length)
correct = jnp.where(
valid > 0.0,
jnp.argmax(logits, axis=-1) == tokens,
jnp.array(False)
)
accuracy = jnp.mean(jnp.sum(correct, axis=-1) / valid_text_length)
return loss, accuracy
def global_norm(tree):
""" Return the global L2 norm of a pytree. """
squared = jax.tree_util.tree_map(lambda x: jnp.sum(jnp.square(x)), tree)
flattened, _ = jax.flatten_util.ravel_pytree(squared)
return jnp.sqrt(jnp.sum(flattened))
def average_metrics(metrics):
with jax.spmd_mode("allow_all"):
return jax.tree_map(
lambda *args: jnp.mean(jnp.stack(args)),
*metrics
)
def get_float_dtype_by_name(dtype):
return {
'bf16': jnp.bfloat16,
'bfloat16': jnp.bfloat16,
'fp16': jnp.float16,
'float16': jnp.float16,
'fp32': jnp.float32,
'float32': jnp.float32,
'fp64': jnp.float64,
'float64': jnp.float64,
}[dtype]
def float_tensor_to_dtype(tensor, dtype):
if dtype is None or dtype == '':
return tensor
if isinstance(dtype, str):
dtype = get_float_dtype_by_name(dtype)
float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64)
if getattr(tensor, 'dtype', None) in float_dtypes:
tensor = tensor.astype(dtype)
return tensor
def float_to_dtype(tree, dtype):
return jax.tree_util.tree_map(
partial(float_tensor_to_dtype, dtype=dtype), tree
)
def get_gradient_checkpoint_policy(name):
return {
'everything_saveable': jax.checkpoint_policies.everything_saveable,
'nothing_saveable': jax.checkpoint_policies.nothing_saveable,
'checkpoint_dots': jax.checkpoint_policies.checkpoint_dots,
'checkpoint_dots_with_no_batch_dims': jax.checkpoint_policies.checkpoint_dots_with_no_batch_dims,
}[name]
def tree_path_to_string(path, sep=None):
keys = []
for key in path:
if isinstance(key, jax.tree_util.SequenceKey):
keys.append(str(key.idx))
elif isinstance(key, jax.tree_util.DictKey):
keys.append(str(key.key))
elif isinstance(key, jax.tree_util.GetAttrKey):
keys.append(str(key.name))
elif isinstance(key, jax.tree_util.FlattenedIndexKey):
keys.append(str(key.key))
else:
keys.append(str(key))
if sep is None:
return tuple(keys)
return sep.join(keys)
def flatten_tree(xs, is_leaf=None, sep=None):
flattened, _ = jax.tree_util.tree_flatten_with_path(xs, is_leaf=is_leaf)
output = {}
for key, val in flattened:
output[tree_path_to_string(key, sep=sep)] = val
return output
def named_tree_map(f, tree, *rest, is_leaf=None, sep=None):
""" An extended version of jax.tree_util.tree_map, where the mapped function
f takes both the name (path) and the tree leaf as input.
"""
return jax.tree_util.tree_map_with_path(
lambda path, x, *r: f(tree_path_to_string(path, sep=sep), x, *r),
tree, *rest,
is_leaf=is_leaf
)
def match_partition_rules(rules, params):
""" Returns a pytree of PartitionSpec according to rules. Supports handling
Flax TrainState and Optax optimizer state.
"""
def get_partition_spec(name, leaf):
if len(leaf.shape) == 0 or np.prod(leaf.shape) == 1:
""" Don't partition scalar values. """
return PS()
for rule, ps in rules:
if re.search(rule, name) is not None:
return ps
raise ValueError(f'Partition rule not found for param: {name}')
return named_tree_map(get_partition_spec, params, sep='/')
def get_weight_decay_mask(exclusions):
""" Return a weight decay mask function that computes the pytree masks
according to the given exclusion rules.
"""
def decay(name, _):
for rule in exclusions:
if re.search(rule, name) is not None:
return False
return True
def weight_decay_mask(params):
return named_tree_map(decay, params, sep='/')
return weight_decay_mask
def tree_apply(fns, tree):
""" Apply a pytree of functions to the pytree. """
return jax.tree_util.tree_map(lambda fn, x: fn(x), fns, tree)