from datasets import load_from_disk | |
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer | |
from transformers import AutoTokenizer | |
model_dir = "./" | |
# load dataset | |
dataset = load_from_disk("/researchdisk/training_dataset_full_deduplicated") | |
dataset = dataset["train"] | |
# Instantiate tokenizer | |
tokenizer = ByteLevelBPETokenizer() | |
def batch_iterator(batch_size=1000): | |
for i in range(0, len(dataset), batch_size): | |
yield dataset[i: i + batch_size]["text"] | |
# Customized training | |
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[ | |
"<s>", | |
"<pad>", | |
"</s>", | |
"<unk>", | |
"<mask>", | |
]) | |
# Save files to disk | |
tokenizer.save(f"{model_dir}/tokenizer.json") | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
tokenizer.save_pretrained(model_dir) |