Text Generation
Transformers
Safetensors
Finnish
llama
finnish
conversational
text-generation-inference
Ahma-7B / EasyLM /scripts /lm_eval_harness.py
aapot
Add training codes
a85f909
raw
history blame
1.91 kB
# This script runs lm_eval_harness evaluations against a served language model.
# Typically, you need to run a language model server first, e.g.:
# python -m EasyLM.models.gptj.gptj_serve ...
import dataclasses
import pprint
from functools import partial
import os
from tqdm import tqdm, trange
import numpy as np
import mlxu
from flax.traverse_util import flatten_dict
from lm_eval import evaluator, tasks
from lm_eval.base import LM
from EasyLM.serving import LMClient
FLAGS, FLAGS_DEF = mlxu.define_flags_with_default(
tasks='wsc,piqa,winogrande,openbookqa,logiqa',
shots=0,
limit=0,
write_out=False,
lm_client=LMClient.get_default_config(),
logger=mlxu.WandBLogger.get_default_config(),
)
class LMEvalHarnessInterface(LM):
def __init__(self, lm_client):
self.lm_client = lm_client
def greedy_until(self, inputs):
prefix, until = zip(*inputs)
return self.lm_client.greedy_until(prefix, until)
def loglikelihood_rolling(self, inputs):
loglikelihood, is_greedy = self.lm_client.loglikelihood_rolling(inputs)
return list(zip(loglikelihood, is_greedy))
def loglikelihood(self, inputs):
prefix, text = zip(*inputs)
loglikelihood, is_greedy = self.lm_client.loglikelihood(prefix, text)
return list(zip(loglikelihood, is_greedy))
def main(argv):
logger = mlxu.WandBLogger(
config=FLAGS.logger, variant=mlxu.get_user_flags(FLAGS, FLAGS_DEF)
)
model = LMEvalHarnessInterface(LMClient(FLAGS.lm_client))
task_list = FLAGS.tasks.split(',')
results = evaluator.evaluate(
model, tasks.get_task_dict(task_list), False, FLAGS.shots,
limit=None if FLAGS.limit <= 0 else FLAGS.limit,
write_out=FLAGS.write_out,
)
logger.log(flatten_dict(results['results'], sep='/'))
pprint.pprint(results)
if __name__ == "__main__":
mlxu.run(main)