|
import os |
|
import numpy as np |
|
from ml_collections import ConfigDict |
|
import mlxu |
|
import jax |
|
import jax.numpy as jnp |
|
import flax |
|
from flax.serialization import ( |
|
from_bytes, to_bytes, to_state_dict, from_state_dict |
|
) |
|
from flax.traverse_util import flatten_dict, unflatten_dict, empty_node |
|
import msgpack |
|
|
|
from EasyLM.jax_utils import tree_apply, float_tensor_to_dtype |
|
|
|
|
|
class StreamingCheckpointer(object): |
|
""" Custom msgpack checkpointer that saves large train states by serializing |
|
and saving tensors one by one in a streaming fashion. Avoids running |
|
out of memory or local TPU disk with default flax checkpointer. |
|
""" |
|
|
|
@staticmethod |
|
def get_default_config(updates=None): |
|
config = ConfigDict() |
|
config.float_dtype = 'bf16' |
|
config.save_optimizer_state = False |
|
|
|
if updates is not None: |
|
config.update(ConfigDict(updates).copy_and_resolve_references()) |
|
return config |
|
|
|
def __init__(self, config, checkpoint_dir, enable=True): |
|
self.config = self.get_default_config(config) |
|
self.checkpoint_dir = checkpoint_dir |
|
self.enable = enable |
|
|
|
def save_checkpoint(self, train_state, filename, gather_fns=None): |
|
if self.enable: |
|
path = os.path.join(self.checkpoint_dir, filename) |
|
else: |
|
path = '/dev/null' |
|
self.save_train_state_to_file( |
|
train_state, path, gather_fns, self.config.float_dtype |
|
) |
|
|
|
@staticmethod |
|
def save_train_state_to_file(train_state, path, gather_fns=None, float_dtype=None): |
|
train_state = to_state_dict(train_state) |
|
packer = msgpack.Packer() |
|
flattend_train_state = flatten_dict(train_state) |
|
if gather_fns is not None: |
|
gather_fns = flatten_dict(to_state_dict(gather_fns)) |
|
|
|
with mlxu.open_file(path, "wb") as fout: |
|
for key, value in flattend_train_state.items(): |
|
if gather_fns is not None: |
|
value = gather_fns[key](value) |
|
value = float_tensor_to_dtype(value, float_dtype) |
|
fout.write(packer.pack((key, to_bytes(value)))) |
|
|
|
def save_pickle(self, obj, filename): |
|
if self.enable: |
|
path = os.path.join(self.checkpoint_dir, filename) |
|
else: |
|
path = '/dev/null' |
|
mlxu.save_pickle(obj, path) |
|
|
|
def save_all(self, train_state, gather_fns, metadata=None, dataset=None, milestone=False): |
|
step = int(jax.device_get(train_state.step)) |
|
if self.config.save_optimizer_state: |
|
checkpoint_state = train_state |
|
checkpoint_name = 'streaming_train_state' |
|
checkpoint_gather_fns = gather_fns |
|
else: |
|
checkpoint_state = train_state.params['params'] |
|
checkpoint_name = 'streaming_params' |
|
checkpoint_gather_fns = gather_fns.params['params'] |
|
|
|
if milestone: |
|
|
|
self.save_pickle(metadata, f'metadata_{step}.pkl') |
|
self.save_pickle(dataset, f'dataset_{step}.pkl') |
|
self.save_checkpoint( |
|
checkpoint_state, f'{checkpoint_name}_{step}', checkpoint_gather_fns |
|
) |
|
else: |
|
|
|
self.save_pickle(metadata, 'metadata.pkl') |
|
self.save_pickle(dataset, 'dataset.pkl') |
|
self.save_checkpoint( |
|
checkpoint_state, f'{checkpoint_name}', checkpoint_gather_fns |
|
) |
|
|
|
@staticmethod |
|
def load_checkpoint(path, target=None, shard_fns=None, remove_dict_prefix=None): |
|
if shard_fns is not None: |
|
shard_fns = flatten_dict( |
|
to_state_dict(shard_fns) |
|
) |
|
if remove_dict_prefix is not None: |
|
remove_dict_prefix = tuple(remove_dict_prefix) |
|
flattend_train_state = {} |
|
with mlxu.open_file(path) as fin: |
|
|
|
unpacker = msgpack.Unpacker(fin, read_size=83886080, max_buffer_size=0) |
|
for key, value in unpacker: |
|
key = tuple(key) |
|
if remove_dict_prefix is not None: |
|
if key[:len(remove_dict_prefix)] == remove_dict_prefix: |
|
key = key[len(remove_dict_prefix):] |
|
else: |
|
continue |
|
|
|
tensor = from_bytes(None, value) |
|
if shard_fns is not None: |
|
tensor = shard_fns[key](tensor) |
|
flattend_train_state[key] = tensor |
|
|
|
if target is not None: |
|
flattened_target = flatten_dict( |
|
to_state_dict(target), keep_empty_nodes=True |
|
) |
|
for key, value in flattened_target.items(): |
|
if key not in flattend_train_state and value == empty_node: |
|
flattend_train_state[key] = value |
|
|
|
train_state = unflatten_dict(flattend_train_state) |
|
if target is None: |
|
return train_state |
|
|
|
return from_state_dict(target, train_state) |
|
|
|
@staticmethod |
|
def load_flax_checkpoint(path, target=None, shard_fns=None): |
|
""" Load a standard flax checkpoint that's not saved with the |
|
msgpack streaming format. |
|
""" |
|
with mlxu.open_file(path, "rb") as fin: |
|
encoded_bytes = fin.read() |
|
|
|
state_dict = flax.serialization.msgpack_restore(encoded_bytes) |
|
if shard_fns is not None: |
|
shard_fns = to_state_dict(shard_fns) |
|
state_dict = tree_apply(shard_fns, state_dict) |
|
|
|
if target is None: |
|
return state_dict |
|
return from_state_dict(target, state_dict) |
|
|
|
@classmethod |
|
def load_trainstate_checkpoint(cls, load_from, trainstate_target=None, |
|
trainstate_shard_fns=None, |
|
disallow_trainstate=False): |
|
if trainstate_target is not None: |
|
params_target = trainstate_target.params['params'] |
|
else: |
|
params_target = None |
|
|
|
if trainstate_shard_fns is not None: |
|
params_shard_fns = trainstate_shard_fns.params['params'] |
|
else: |
|
params_shard_fns = None |
|
|
|
load_type, load_path = load_from.split('::', 1) |
|
if disallow_trainstate: |
|
assert load_type != 'trainstate', 'Loading full trainstate is not allowed!' |
|
train_state = None |
|
restored_params = None |
|
if load_type == 'trainstate': |
|
|
|
train_state = cls.load_checkpoint( |
|
path=load_path, |
|
target=trainstate_target, |
|
shard_fns=trainstate_shard_fns, |
|
) |
|
elif load_type == 'trainstate_params': |
|
|
|
restored_params = cls.load_checkpoint( |
|
path=load_path, |
|
target=params_target, |
|
shard_fns=params_shard_fns, |
|
remove_dict_prefix=('params', 'params'), |
|
) |
|
restored_params = flax.core.frozen_dict.freeze( |
|
{'params': restored_params} |
|
) |
|
elif load_type == 'params': |
|
|
|
restored_params = cls.load_checkpoint( |
|
path=load_path, |
|
target=params_target, |
|
shard_fns=params_shard_fns, |
|
) |
|
restored_params = flax.core.frozen_dict.freeze( |
|
{'params': restored_params} |
|
) |
|
elif load_type == 'flax_params': |
|
|
|
|
|
restored_params = cls.load_flax_checkpoint( |
|
path=load_path, |
|
target=params_target, |
|
shard_fns=params_shard_fns |
|
) |
|
restored_params = flax.core.frozen_dict.freeze( |
|
{'params': restored_params} |
|
) |
|
else: |
|
raise ValueError(f'Invalid load_from type: {load_type}') |
|
|
|
return train_state, restored_params |
|
|