aapot
commited on
Commit
·
c554f4f
1
Parent(s):
c32a512
Update tokenizer
Browse files- EasyLM/models/llama/llama_model.py +220 -50
- tokenizer.model +2 -2
- tokenizer.vocab +0 -0
- train_sentencepiece.py +2 -0
EasyLM/models/llama/llama_model.py
CHANGED
@@ -20,9 +20,10 @@ import einops
|
|
20 |
|
21 |
import sentencepiece as spm
|
22 |
from transformers import AutoTokenizer
|
|
|
23 |
from transformers.configuration_utils import PretrainedConfig
|
24 |
from transformers.utils import logging
|
25 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
26 |
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
27 |
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
28 |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
@@ -355,7 +356,7 @@ class LLaMAConfig(PretrainedConfig):
|
|
355 |
truncation_side=truncation_side,
|
356 |
)
|
357 |
else:
|
358 |
-
tokenizer =
|
359 |
vocab_file=config.vocab_file,
|
360 |
add_bos_token=config.add_bos_token,
|
361 |
add_eos_token=config.add_eos_token,
|
@@ -1176,18 +1177,83 @@ class FlaxLLaMAForCausalLM(FlaxLLaMAPreTrainedModel):
|
|
1176 |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
1177 |
|
1178 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
|
|
|
|
1179 |
|
1180 |
|
1181 |
-
class
|
1182 |
"""
|
1183 |
-
Construct a
|
|
|
|
|
1184 |
Args:
|
1185 |
vocab_file (`str`):
|
1186 |
Path to the vocabulary file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1187 |
"""
|
1188 |
|
1189 |
vocab_files_names = VOCAB_FILES_NAMES
|
1190 |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
|
1191 |
model_input_names = ["input_ids", "attention_mask"]
|
1192 |
|
1193 |
def __init__(
|
@@ -1196,44 +1262,91 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1196 |
unk_token="<unk>",
|
1197 |
bos_token="<s>",
|
1198 |
eos_token="</s>",
|
|
|
1199 |
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
1200 |
add_bos_token=False,
|
1201 |
add_eos_token=False,
|
|
|
|
|
|
|
|
|
1202 |
**kwargs,
|
1203 |
):
|
1204 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
1205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1206 |
self.vocab_file = vocab_file
|
1207 |
self.add_bos_token = add_bos_token
|
1208 |
self.add_eos_token = add_eos_token
|
1209 |
-
self.
|
|
|
1210 |
|
1211 |
-
|
1212 |
-
with open_file(self.vocab_file, 'rb') as fin:
|
1213 |
-
tfile.write(fin.read())
|
1214 |
-
tfile.flush()
|
1215 |
-
tfile.seek(0)
|
1216 |
-
self.sp_model.Load(tfile.name)
|
1217 |
-
""" Initialisation"""
|
1218 |
-
self.add_special_tokens(dict(
|
1219 |
-
unk_token=unk_token,
|
1220 |
bos_token=bos_token,
|
1221 |
eos_token=eos_token,
|
1222 |
-
|
1223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1224 |
|
1225 |
@property
|
1226 |
-
def
|
1227 |
-
|
1228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1229 |
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1233 |
|
1234 |
@property
|
1235 |
-
def
|
1236 |
-
|
|
|
1237 |
|
1238 |
def get_vocab(self):
|
1239 |
"""Returns vocab as a dict"""
|
@@ -1241,9 +1354,40 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1241 |
vocab.update(self.added_tokens_encoder)
|
1242 |
return vocab
|
1243 |
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1247 |
|
1248 |
def _convert_token_to_id(self, token):
|
1249 |
"""Converts a token (str) in an id using the vocab."""
|
@@ -1256,13 +1400,17 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1256 |
|
1257 |
def convert_tokens_to_string(self, tokens):
|
1258 |
"""Converts a sequence of tokens (string) in a single string."""
|
|
|
|
|
|
|
|
|
1259 |
current_sub_tokens = []
|
1260 |
out_string = ""
|
1261 |
prev_is_special = False
|
1262 |
-
for token in tokens:
|
1263 |
# make sure that special tokens are not decoded using sentencepiece model
|
1264 |
if token in self.all_special_tokens:
|
1265 |
-
if not prev_is_special:
|
1266 |
out_string += " "
|
1267 |
out_string += self.sp_model.decode(current_sub_tokens) + token
|
1268 |
prev_is_special = True
|
@@ -1271,14 +1419,16 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1271 |
current_sub_tokens.append(token)
|
1272 |
prev_is_special = False
|
1273 |
out_string += self.sp_model.decode(current_sub_tokens)
|
1274 |
-
return out_string
|
1275 |
|
1276 |
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
1277 |
"""
|
1278 |
Save the vocabulary and special tokens file to a directory.
|
|
|
1279 |
Args:
|
1280 |
save_directory (`str`):
|
1281 |
The directory in which to save the vocabulary.
|
|
|
1282 |
Returns:
|
1283 |
`Tuple(str)`: Paths to the files saved.
|
1284 |
"""
|
@@ -1299,18 +1449,13 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1299 |
return (out_vocab_file,)
|
1300 |
|
1301 |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
1302 |
-
if self.add_bos_token
|
1303 |
-
|
1304 |
-
else:
|
1305 |
-
bos_token_ids = []
|
1306 |
|
1307 |
-
output =
|
1308 |
|
1309 |
if token_ids_1 is not None:
|
1310 |
-
output = output + token_ids_1
|
1311 |
-
|
1312 |
-
if self.add_eos_token:
|
1313 |
-
output = output + [self.eos_token_id]
|
1314 |
|
1315 |
return output
|
1316 |
|
@@ -1320,6 +1465,7 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1320 |
"""
|
1321 |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
1322 |
special tokens using the tokenizer `prepare_for_model` method.
|
|
|
1323 |
Args:
|
1324 |
token_ids_0 (`List[int]`):
|
1325 |
List of IDs.
|
@@ -1327,6 +1473,7 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1327 |
Optional second list of IDs for sequence pairs.
|
1328 |
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
1329 |
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
1330 |
Returns:
|
1331 |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
1332 |
"""
|
@@ -1335,26 +1482,49 @@ class LLaMATokenizer(PreTrainedTokenizer):
|
|
1335 |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
1336 |
)
|
1337 |
|
|
|
|
|
|
|
1338 |
if token_ids_1 is None:
|
1339 |
-
return
|
1340 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1341 |
|
1342 |
def create_token_type_ids_from_sequences(
|
1343 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
1344 |
) -> List[int]:
|
1345 |
"""
|
1346 |
-
|
1347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1348 |
Args:
|
1349 |
token_ids_0 (`List[int]`):
|
1350 |
-
List of
|
1351 |
token_ids_1 (`List[int]`, *optional*):
|
1352 |
Optional second list of IDs for sequence pairs.
|
|
|
1353 |
Returns:
|
1354 |
-
`List[int]`: List of
|
1355 |
"""
|
1356 |
-
|
|
|
1357 |
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
|
|
|
|
|
|
|
20 |
|
21 |
import sentencepiece as spm
|
22 |
from transformers import AutoTokenizer
|
23 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
24 |
from transformers.configuration_utils import PretrainedConfig
|
25 |
from transformers.utils import logging
|
26 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
27 |
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
28 |
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
29 |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
|
|
356 |
truncation_side=truncation_side,
|
357 |
)
|
358 |
else:
|
359 |
+
tokenizer = LlamaTokenizer(
|
360 |
vocab_file=config.vocab_file,
|
361 |
add_bos_token=config.add_bos_token,
|
362 |
add_eos_token=config.add_eos_token,
|
|
|
1177 |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
1178 |
|
1179 |
PRETRAINED_VOCAB_FILES_MAP = {}
|
1180 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
1181 |
+
SPIECE_UNDERLINE = "▁"
|
1182 |
|
1183 |
|
1184 |
+
class LlamaTokenizer(PreTrainedTokenizer):
|
1185 |
"""
|
1186 |
+
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
1187 |
+
no padding token in the original model.
|
1188 |
+
|
1189 |
Args:
|
1190 |
vocab_file (`str`):
|
1191 |
Path to the vocabulary file.
|
1192 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
1193 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
1194 |
+
token instead.
|
1195 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
1196 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
1197 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
1198 |
+
The end of sequence token.
|
1199 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
1200 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
1201 |
+
attention mechanisms or loss computation.
|
1202 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
1203 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
1204 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
1205 |
+
to set:
|
1206 |
+
|
1207 |
+
- `enable_sampling`: Enable subword regularization.
|
1208 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
1209 |
+
|
1210 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
1211 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
1212 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
1213 |
+
using forward-filtering-and-backward-sampling algorithm.
|
1214 |
+
|
1215 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
1216 |
+
BPE-dropout.
|
1217 |
+
|
1218 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
1219 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
1220 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
1221 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
1222 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
1223 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
1224 |
+
extra spaces.
|
1225 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
1226 |
+
Whether or not the default system prompt for Llama should be used.
|
1227 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
1228 |
+
Whether or not to add spaces between special tokens.
|
1229 |
+
legacy (`bool`, *optional*):
|
1230 |
+
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
1231 |
+
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
|
1232 |
+
example:
|
1233 |
+
|
1234 |
+
- `legacy=True`:
|
1235 |
+
```python
|
1236 |
+
>>> from transformers import T5Tokenizer
|
1237 |
+
|
1238 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
|
1239 |
+
>>> tokenizer.encode("Hello <extra_id_0>.")
|
1240 |
+
[8774, 32099, 3, 5, 1]
|
1241 |
+
```
|
1242 |
+
- `legacy=False`:
|
1243 |
+
```python
|
1244 |
+
>>> from transformers import T5Tokenizer
|
1245 |
+
|
1246 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
|
1247 |
+
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
1248 |
+
[8774, 32099, 5, 1]
|
1249 |
+
```
|
1250 |
+
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
1251 |
+
|
1252 |
"""
|
1253 |
|
1254 |
vocab_files_names = VOCAB_FILES_NAMES
|
1255 |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
1256 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
1257 |
model_input_names = ["input_ids", "attention_mask"]
|
1258 |
|
1259 |
def __init__(
|
|
|
1262 |
unk_token="<unk>",
|
1263 |
bos_token="<s>",
|
1264 |
eos_token="</s>",
|
1265 |
+
pad_token=None,
|
1266 |
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
1267 |
add_bos_token=False,
|
1268 |
add_eos_token=False,
|
1269 |
+
clean_up_tokenization_spaces=False,
|
1270 |
+
use_default_system_prompt=False,
|
1271 |
+
spaces_between_special_tokens=False,
|
1272 |
+
legacy=None,
|
1273 |
**kwargs,
|
1274 |
):
|
1275 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
1276 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
1277 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
1278 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
1279 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
1280 |
+
|
1281 |
+
if legacy is None:
|
1282 |
+
logger.warning_once(
|
1283 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
1284 |
+
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
1285 |
+
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
1286 |
+
" means, and thoroughly read the reason why this was added as explained in"
|
1287 |
+
" https://github.com/huggingface/transformers/pull/24565"
|
1288 |
+
)
|
1289 |
+
legacy = True
|
1290 |
+
|
1291 |
+
self.legacy = legacy
|
1292 |
self.vocab_file = vocab_file
|
1293 |
self.add_bos_token = add_bos_token
|
1294 |
self.add_eos_token = add_eos_token
|
1295 |
+
self.use_default_system_prompt = use_default_system_prompt
|
1296 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
1297 |
|
1298 |
+
super().__init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1299 |
bos_token=bos_token,
|
1300 |
eos_token=eos_token,
|
1301 |
+
unk_token=unk_token,
|
1302 |
+
pad_token=pad_token,
|
1303 |
+
add_bos_token=add_bos_token,
|
1304 |
+
add_eos_token=add_eos_token,
|
1305 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
1306 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
1307 |
+
use_default_system_prompt=use_default_system_prompt,
|
1308 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
1309 |
+
legacy=legacy,
|
1310 |
+
**kwargs,
|
1311 |
+
)
|
1312 |
|
1313 |
@property
|
1314 |
+
def unk_token_length(self):
|
1315 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
1316 |
+
|
1317 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
1318 |
+
def get_spm_processor(self, from_slow=False):
|
1319 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
1320 |
+
if self.legacy or from_slow: # no dependency on protobuf
|
1321 |
+
tokenizer.Load(self.vocab_file)
|
1322 |
+
return tokenizer
|
1323 |
+
|
1324 |
+
with open(self.vocab_file, "rb") as f:
|
1325 |
+
sp_model = f.read()
|
1326 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
1327 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
1328 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
1329 |
+
normalizer_spec.add_dummy_prefix = False
|
1330 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
1331 |
+
sp_model = model.SerializeToString()
|
1332 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
1333 |
+
return tokenizer
|
1334 |
|
1335 |
+
def __getstate__(self):
|
1336 |
+
state = self.__dict__.copy()
|
1337 |
+
state["sp_model"] = None
|
1338 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
1339 |
+
return state
|
1340 |
+
|
1341 |
+
def __setstate__(self, d):
|
1342 |
+
self.__dict__ = d
|
1343 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
1344 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
1345 |
|
1346 |
@property
|
1347 |
+
def vocab_size(self):
|
1348 |
+
"""Returns vocab size"""
|
1349 |
+
return self.sp_model.get_piece_size()
|
1350 |
|
1351 |
def get_vocab(self):
|
1352 |
"""Returns vocab as a dict"""
|
|
|
1354 |
vocab.update(self.added_tokens_encoder)
|
1355 |
return vocab
|
1356 |
|
1357 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
1358 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
1359 |
+
"""
|
1360 |
+
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
1361 |
+
first token is special.
|
1362 |
+
"""
|
1363 |
+
if self.legacy or len(text) == 0:
|
1364 |
+
return super().tokenize(text, **kwargs)
|
1365 |
+
|
1366 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
1367 |
+
|
1368 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
1369 |
+
tokens = tokens[1:]
|
1370 |
+
return tokens
|
1371 |
+
|
1372 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
1373 |
+
def _tokenize(self, text, **kwargs):
|
1374 |
+
"""
|
1375 |
+
Returns a tokenized string.
|
1376 |
+
|
1377 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
1378 |
+
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
1379 |
+
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
1380 |
+
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
1381 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
1382 |
+
"""
|
1383 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
1384 |
+
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
1385 |
+
return tokens
|
1386 |
+
|
1387 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
1388 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
1389 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
1390 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
1391 |
|
1392 |
def _convert_token_to_id(self, token):
|
1393 |
"""Converts a token (str) in an id using the vocab."""
|
|
|
1400 |
|
1401 |
def convert_tokens_to_string(self, tokens):
|
1402 |
"""Converts a sequence of tokens (string) in a single string."""
|
1403 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
1404 |
+
if tokens[0].startswith(SPIECE_UNDERLINE):
|
1405 |
+
tokens[0] = tokens[0][1:]
|
1406 |
+
|
1407 |
current_sub_tokens = []
|
1408 |
out_string = ""
|
1409 |
prev_is_special = False
|
1410 |
+
for i, token in enumerate(tokens):
|
1411 |
# make sure that special tokens are not decoded using sentencepiece model
|
1412 |
if token in self.all_special_tokens:
|
1413 |
+
if not prev_is_special and i != 0 and self.legacy:
|
1414 |
out_string += " "
|
1415 |
out_string += self.sp_model.decode(current_sub_tokens) + token
|
1416 |
prev_is_special = True
|
|
|
1419 |
current_sub_tokens.append(token)
|
1420 |
prev_is_special = False
|
1421 |
out_string += self.sp_model.decode(current_sub_tokens)
|
1422 |
+
return out_string
|
1423 |
|
1424 |
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
1425 |
"""
|
1426 |
Save the vocabulary and special tokens file to a directory.
|
1427 |
+
|
1428 |
Args:
|
1429 |
save_directory (`str`):
|
1430 |
The directory in which to save the vocabulary.
|
1431 |
+
|
1432 |
Returns:
|
1433 |
`Tuple(str)`: Paths to the files saved.
|
1434 |
"""
|
|
|
1449 |
return (out_vocab_file,)
|
1450 |
|
1451 |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
1452 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
1453 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
|
|
|
1454 |
|
1455 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
1456 |
|
1457 |
if token_ids_1 is not None:
|
1458 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
|
|
|
|
|
|
1459 |
|
1460 |
return output
|
1461 |
|
|
|
1465 |
"""
|
1466 |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
1467 |
special tokens using the tokenizer `prepare_for_model` method.
|
1468 |
+
|
1469 |
Args:
|
1470 |
token_ids_0 (`List[int]`):
|
1471 |
List of IDs.
|
|
|
1473 |
Optional second list of IDs for sequence pairs.
|
1474 |
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
1475 |
Whether or not the token list is already formatted with special tokens for the model.
|
1476 |
+
|
1477 |
Returns:
|
1478 |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
1479 |
"""
|
|
|
1482 |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
1483 |
)
|
1484 |
|
1485 |
+
bos_token_id = [1] if self.add_bos_token else []
|
1486 |
+
eos_token_id = [1] if self.add_eos_token else []
|
1487 |
+
|
1488 |
if token_ids_1 is None:
|
1489 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
1490 |
+
return (
|
1491 |
+
bos_token_id
|
1492 |
+
+ ([0] * len(token_ids_0))
|
1493 |
+
+ eos_token_id
|
1494 |
+
+ bos_token_id
|
1495 |
+
+ ([0] * len(token_ids_1))
|
1496 |
+
+ eos_token_id
|
1497 |
+
)
|
1498 |
|
1499 |
def create_token_type_ids_from_sequences(
|
1500 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
1501 |
) -> List[int]:
|
1502 |
"""
|
1503 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
1504 |
+
sequence pair mask has the following format:
|
1505 |
+
|
1506 |
+
```
|
1507 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
1508 |
+
| first sequence | second sequence |
|
1509 |
+
```
|
1510 |
+
|
1511 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
1512 |
+
|
1513 |
Args:
|
1514 |
token_ids_0 (`List[int]`):
|
1515 |
+
List of ids.
|
1516 |
token_ids_1 (`List[int]`, *optional*):
|
1517 |
Optional second list of IDs for sequence pairs.
|
1518 |
+
|
1519 |
Returns:
|
1520 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
1521 |
"""
|
1522 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
1523 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
1524 |
|
1525 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
1526 |
+
|
1527 |
+
if token_ids_1 is not None:
|
1528 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
1529 |
+
|
1530 |
+
return output
|
tokenizer.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1980c00aa3cb5455177a39efa3e60e7b8887ee89c3f7b8950719592a08ad9456
|
3 |
+
size 1400411
|
tokenizer.vocab
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
train_sentencepiece.py
CHANGED
@@ -2,7 +2,9 @@ import sentencepiece as spm
|
|
2 |
|
3 |
spm.SentencePieceTrainer.train(input="/researchdisk/training_dataset_sentences/train.txt", model_prefix="tokenizer",
|
4 |
model_type="bpe", split_digits=True, vocab_size=64256, byte_fallback=True,
|
|
|
5 |
user_defined_symbols=["[INST]", "[/INST]", "<<SYS>>", "<</SYS>>"],
|
|
|
6 |
train_extremely_large_corpus=True,
|
7 |
input_sentence_size=500000000, shuffle_input_sentence=True,
|
8 |
num_threads=96)
|
|
|
2 |
|
3 |
spm.SentencePieceTrainer.train(input="/researchdisk/training_dataset_sentences/train.txt", model_prefix="tokenizer",
|
4 |
model_type="bpe", split_digits=True, vocab_size=64256, byte_fallback=True,
|
5 |
+
normalization_rule_name="nfkc",
|
6 |
user_defined_symbols=["[INST]", "[/INST]", "<<SYS>>", "<</SYS>>"],
|
7 |
+
required_chars="abcdefghijklmnopqrstuvwxyzåäöABCDEFGHIJKLMNOPQRSTUVWXYZÅÄÖ",
|
8 |
train_extremely_large_corpus=True,
|
9 |
input_sentence_size=500000000, shuffle_input_sentence=True,
|
10 |
num_threads=96)
|