Ferdi's picture
mistralai/Mistral-7B-Instruct-v0.2-FaVe-rank32-5epochs
a0c3fd8 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: Mistral-7B-Instruct-v0.2-FaVe-rank32-5epochs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-FaVe-rank32-5epochs
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.2685 | 10 | 1.6565 |
| 1.9741 | 0.5369 | 20 | 0.8458 |
| 1.9741 | 0.8054 | 30 | 0.6980 |
| 0.6899 | 1.0738 | 40 | 0.5970 |
| 0.6899 | 1.3423 | 50 | 0.5199 |
| 0.4685 | 1.6107 | 60 | 0.4780 |
| 0.4685 | 1.8792 | 70 | 0.4560 |
| 0.3938 | 2.1477 | 80 | 0.4287 |
| 0.3938 | 2.4161 | 90 | 0.4271 |
| 0.3251 | 2.6846 | 100 | 0.4108 |
| 0.3251 | 2.9530 | 110 | 0.4008 |
| 0.2553 | 3.2215 | 120 | 0.4320 |
| 0.2553 | 3.4899 | 130 | 0.3979 |
| 0.2369 | 3.7584 | 140 | 0.3967 |
| 0.2369 | 4.0268 | 150 | 0.3998 |
| 0.2003 | 4.2953 | 160 | 0.4066 |
| 0.2003 | 4.5638 | 170 | 0.4091 |
| 0.1718 | 4.8322 | 180 | 0.4060 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1