language: en | |
<p align="center"> | |
<img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> | |
</p> | |
**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** | |
## Task: classification | |
https://github.com/mindee/doctr | |
### Example usage: | |
```python | |
>>> from doctr.io import DocumentFile | |
>>> from doctr.models import ocr_predictor, from_hub | |
>>> img = DocumentFile.from_images(['<image_path>']) | |
>>> # Load your model from the hub | |
>>> model = from_hub('mindee/my-model') | |
>>> # Pass it to the predictor | |
>>> # If your model is a recognition model: | |
>>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', | |
>>> reco_arch=model, | |
>>> pretrained=True) | |
>>> # If your model is a detection model: | |
>>> predictor = ocr_predictor(det_arch=model, | |
>>> reco_arch='crnn_mobilenet_v3_small', | |
>>> pretrained=True) | |
>>> # Get your predictions | |
>>> res = predictor(img) | |
``` | |