|
"""Utils for monoDepth. |
|
""" |
|
import sys |
|
import re |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
|
|
|
|
def read_pfm(path): |
|
"""Read pfm file. |
|
|
|
Args: |
|
path (str): path to file |
|
|
|
Returns: |
|
tuple: (data, scale) |
|
""" |
|
with open(path, "rb") as file: |
|
|
|
color = None |
|
width = None |
|
height = None |
|
scale = None |
|
endian = None |
|
|
|
header = file.readline().rstrip() |
|
if header.decode("ascii") == "PF": |
|
color = True |
|
elif header.decode("ascii") == "Pf": |
|
color = False |
|
else: |
|
raise Exception("Not a PFM file: " + path) |
|
|
|
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) |
|
if dim_match: |
|
width, height = list(map(int, dim_match.groups())) |
|
else: |
|
raise Exception("Malformed PFM header.") |
|
|
|
scale = float(file.readline().decode("ascii").rstrip()) |
|
if scale < 0: |
|
|
|
endian = "<" |
|
scale = -scale |
|
else: |
|
|
|
endian = ">" |
|
|
|
data = np.fromfile(file, endian + "f") |
|
shape = (height, width, 3) if color else (height, width) |
|
|
|
data = np.reshape(data, shape) |
|
data = np.flipud(data) |
|
|
|
return data, scale |
|
|
|
|
|
def write_pfm(path, image, scale=1): |
|
"""Write pfm file. |
|
|
|
Args: |
|
path (str): pathto file |
|
image (array): data |
|
scale (int, optional): Scale. Defaults to 1. |
|
""" |
|
|
|
with open(path, "wb") as file: |
|
color = None |
|
|
|
if image.dtype.name != "float32": |
|
raise Exception("Image dtype must be float32.") |
|
|
|
image = np.flipud(image) |
|
|
|
if len(image.shape) == 3 and image.shape[2] == 3: |
|
color = True |
|
elif ( |
|
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 |
|
): |
|
color = False |
|
else: |
|
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") |
|
|
|
file.write("PF\n" if color else "Pf\n".encode()) |
|
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) |
|
|
|
endian = image.dtype.byteorder |
|
|
|
if endian == "<" or endian == "=" and sys.byteorder == "little": |
|
scale = -scale |
|
|
|
file.write("%f\n".encode() % scale) |
|
|
|
image.tofile(file) |
|
|
|
|
|
def read_image(path): |
|
"""Read image and output RGB image (0-1). |
|
|
|
Args: |
|
path (str): path to file |
|
|
|
Returns: |
|
array: RGB image (0-1) |
|
""" |
|
img = cv2.imread(path) |
|
|
|
if img.ndim == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 |
|
|
|
return img |
|
|
|
|
|
def resize_image(img): |
|
"""Resize image and make it fit for network. |
|
|
|
Args: |
|
img (array): image |
|
|
|
Returns: |
|
tensor: data ready for network |
|
""" |
|
height_orig = img.shape[0] |
|
width_orig = img.shape[1] |
|
|
|
if width_orig > height_orig: |
|
scale = width_orig / 384 |
|
else: |
|
scale = height_orig / 384 |
|
|
|
height = (np.ceil(height_orig / scale / 32) * 32).astype(int) |
|
width = (np.ceil(width_orig / scale / 32) * 32).astype(int) |
|
|
|
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) |
|
|
|
img_resized = ( |
|
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float() |
|
) |
|
img_resized = img_resized.unsqueeze(0) |
|
|
|
return img_resized |
|
|
|
|
|
def resize_depth(depth, width, height): |
|
"""Resize depth map and bring to CPU (numpy). |
|
|
|
Args: |
|
depth (tensor): depth |
|
width (int): image width |
|
height (int): image height |
|
|
|
Returns: |
|
array: processed depth |
|
""" |
|
depth = torch.squeeze(depth[0, :, :, :]).to("cpu") |
|
|
|
depth_resized = cv2.resize( |
|
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC |
|
) |
|
|
|
return depth_resized |
|
|
|
def write_depth(path, depth, grayscale, bits=1): |
|
"""Write depth map to png file. |
|
|
|
Args: |
|
path (str): filepath without extension |
|
depth (array): depth |
|
grayscale (bool): use a grayscale colormap? |
|
""" |
|
if not grayscale: |
|
bits = 1 |
|
|
|
if not np.isfinite(depth).all(): |
|
depth=np.nan_to_num(depth, nan=0.0, posinf=0.0, neginf=0.0) |
|
print("WARNING: Non-finite depth values present") |
|
|
|
depth_min = depth.min() |
|
depth_max = depth.max() |
|
|
|
max_val = (2**(8*bits))-1 |
|
|
|
if depth_max - depth_min > np.finfo("float").eps: |
|
out = max_val * (depth - depth_min) / (depth_max - depth_min) |
|
else: |
|
out = np.zeros(depth.shape, dtype=depth.dtype) |
|
|
|
if not grayscale: |
|
out = cv2.applyColorMap(np.uint8(out), cv2.COLORMAP_INFERNO) |
|
|
|
if bits == 1: |
|
cv2.imwrite(path + ".png", out.astype("uint8")) |
|
elif bits == 2: |
|
cv2.imwrite(path + ".png", out.astype("uint16")) |
|
|
|
return |
|
|