FatemehYp commited on
Commit
c88d432
1 Parent(s): edfab10

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +53 -0
  2. config.json +24 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +16 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: medicalai/ClinicalBERT
3
+ tags:
4
+ - generated_from_keras_callback
5
+ model-index:
6
+ - name: FatemehYp/ClinicalBert_qa_model
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
+ probably proofread and complete it, then remove this comment. -->
12
+
13
+ # FatemehYp/ClinicalBert_qa_model
14
+
15
+ This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Train Loss: 2.5018
18
+ - Validation Loss: 1.5071
19
+ - Epoch: 0
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 268, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
39
+ - training_precision: float32
40
+
41
+ ### Training results
42
+
43
+ | Train Loss | Validation Loss | Epoch |
44
+ |:----------:|:---------------:|:-----:|
45
+ | 2.5018 | 1.5071 | 0 |
46
+
47
+
48
+ ### Framework versions
49
+
50
+ - Transformers 4.32.0
51
+ - TensorFlow 2.12.0
52
+ - Datasets 2.14.4
53
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "medicalai/ClinicalBERT",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForQuestionAnswering"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_past": true,
17
+ "pad_token_id": 0,
18
+ "qa_dropout": 0.1,
19
+ "seq_classif_dropout": 0.2,
20
+ "sinusoidal_pos_embds": false,
21
+ "tie_weights_": true,
22
+ "transformers_version": "4.32.0",
23
+ "vocab_size": 119547
24
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36a4f74ab21d0e6e14aeea1402e90a9a395ce92852842a0573aae0eac42d2872
3
+ size 539068392
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "full_tokenizer_file": null,
7
+ "mask_token": "[MASK]",
8
+ "model_max_length": 1000000000000000019884624838656,
9
+ "never_split": null,
10
+ "pad_token": "[PAD]",
11
+ "sep_token": "[SEP]",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "DistilBertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff