Farshid's picture
update model card README.md
3874321
|
raw
history blame
2.43 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - financial_phrasebank
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased_allagree3
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: financial_phrasebank
          type: financial_phrasebank
          args: sentences_allagree
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9778761061946902
          - name: F1
            type: f1
            value: 0.9780006392634297

distilbert-base-uncased_allagree3

This model is a fine-tuned version of distilbert-base-uncased on the financial_phrasebank dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0937
  • Accuracy: 0.9779
  • F1: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6418 1.0 57 0.3340 0.8805 0.8768
0.1821 2.0 114 0.1088 0.9690 0.9691
0.0795 3.0 171 0.0822 0.9823 0.9823
0.0385 4.0 228 0.0939 0.9646 0.9646
0.0218 5.0 285 0.1151 0.9735 0.9737
0.0149 6.0 342 0.1126 0.9690 0.9694
0.006 7.0 399 0.0989 0.9779 0.9780
0.0093 8.0 456 0.1009 0.9779 0.9780
0.0063 9.0 513 0.0899 0.9779 0.9780
0.0039 10.0 570 0.0937 0.9779 0.9780

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cpu
  • Datasets 2.3.2
  • Tokenizers 0.12.1