mstatt commited on
Commit
2c5ba69
1 Parent(s): 7b7d32c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -179
README.md CHANGED
@@ -3,197 +3,126 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card: Falconsai/florence-2-invoice
7
 
8
+ - **Developed by:** Michael Stattelman for Falcons.ai
9
+ - **Funded by [optional]:** Falcons.ai
10
 
11
+ ### Model Sources:
12
 
13
+ - **Repository:** https://github.com/Falcons-ai/florence2_invoice_finetuning
14
 
15
+ ## Model Overview
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ `Falconsai/florence-2-invoice` is a fine-tuned version of the `microsoft/Florence-2-base-ft` model. This model has been specifically trained to identify and extract key fields from invoice images. The fine-tuning process utilized a curated dataset of invoices annotated to recognize the following fields:
18
 
19
+ - Billing address
20
+ - Discount percentage
21
+ - Due date
22
+ - Email client
23
+ - Header
24
+ - Invoice date
25
+ - Invoice number
26
+ - Name client
27
+ - Products
28
+ - Remise
29
+ - Shipping address
30
+ - Subtotal
31
+ - Tax
32
+ - Tax percentage
33
+ - Tel client
34
+ - Total
35
 
36
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ ### Base Model
39
+ The base model used for fine-tuning is `microsoft/Florence-2-base-ft`, a state-of-the-art vision model developed by Microsoft.
40
+
41
+ ### Fine-tuning Configuration
42
+ The fine-tuning process was carried out using a Low-Rank Adaptation (LoRa) configuration with the following parameters:
43
+
44
+ ```python
45
+ LoraConfig(
46
+ r=8,
47
+ lora_alpha=8,
48
+ target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "linear", "Conv2d", "lm_head", "fc2"],
49
+ task_type="CAUSAL_LM",
50
+ lora_dropout=0.05,
51
+ bias="none",
52
+ inference_mode=False,
53
+ use_rslora=True,
54
+ init_lora_weights="gaussian",
55
+ revision=REVISION
56
+ )
57
+ ```
58
+
59
+ ### Hardware Used
60
+ The fine-tuning process was conducted on an Alienware system, ensuring robust performance and efficient training.
61
+
62
+ ## Dataset
63
+ The model was trained on a curated dataset of invoice images. Each invoice was annotated to identify the specific fields listed above. This dataset ensured that the model learned to accurately detect and extract key information from various invoice formats.
64
+
65
+ ## Usage
66
+
67
+ ### Inference
68
+ To use this model for inference, you can load it via the Hugging Face Transformers library:
69
+
70
+ ```python
71
+ from PIL import Image
72
+ from transformers import (
73
+ AdamW,
74
+ AutoModelForCausalLM,
75
+ AutoProcessor,
76
+ get_scheduler
77
+ )
78
+ def run_florence_invoice(img, task_prompt, text_input=None):
79
+ image = Image.open(img)
80
+
81
+ # Ensure the image is in RGB format
82
+ if image.mode != "RGB":
83
+ image = image.convert("RGB")
84
+
85
+ model_id2 = "Falconsai/florence-2-invoice"
86
+ model = AutoModelForCausalLM.from_pretrained(model_id2, trust_remote_code=True).eval().cuda()
87
+ processor = AutoProcessor.from_pretrained(model_id2, trust_remote_code=True)
88
+
89
+ with torch.no_grad():
90
+ if text_input is None:
91
+ prompt = task_prompt
92
+ else:
93
+ prompt = task_prompt + text_input
94
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
95
+ generated_ids = model.generate(
96
+ input_ids=inputs["input_ids"].cuda(),
97
+ pixel_values=inputs["pixel_values"].cuda(),
98
+ max_new_tokens=1024,
99
+ num_beams=3
100
+ )
101
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
102
+ parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
103
+
104
+ del model
105
+ del processor
106
+
107
+ return parsed_answer
108
+ ```
109
+
110
+ ### Applications
111
+ This model is ideal for automating the extraction of key information from invoices in various business and financial applications. It can significantly reduce the manual effort required for data entry and validation in accounting and bookkeeping processes.
112
 
113
  ## Evaluation
114
+ The model has been evaluated on a held-out set of annotated invoice images. The evaluation metrics used included precision, recall, and F1-score for each of the identified fields. Detailed evaluation results and visualizations are available in the `results` directory of the repository.
115
 
116
+ ## Limitations
117
+ - The model's performance is dependent on the quality and variability of the training dataset. It may not perform as well on invoices that significantly differ from those seen during training.
118
+ - Fine-tuning was conducted with specific LoRa configurations, which may need to be adjusted for different use cases or datasets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
+ ## Contact
121
+ For more information or questions about this model, please contact the developers at [your-email@example.com].
122
 
123
+ ## License
124
+ This model is licensed under the MIT License. See the `LICENSE` file for more details.
125
 
126
+ ## Acknowledgments
127
+ We would like to thank Microsoft for the development of the Florence2 vision model and the broader machine learning community for their contributions and support.
128