big-brain-lm / language.py
Fal7acy's picture
Upload model
e58f28a
import math
import torch
import torch.nn as nn
from torch.nn import functional as f
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from language_config import BigBrainLanguageConfig
def _make_casual_mask(size: int) -> torch.Tensor:
return torch.tril(torch.ones(size, size))
class RootMeanSquareNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_eps = eps
def forward(self, x: torch.Tensor):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_eps)
return self.weight * x
class MultiLayerPerceptron(nn.Module):
def __init__(self, config: BigBrainLanguageConfig):
super().__init__()
self.config = config
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class RotaryPositionalEmbedding(nn.Module):
def __init__(self, dim: int, base: int = 10000):
super().__init__()
self.dim = dim
self.base = base
self.cos = None
self.sin = None
def _build_cache(self, x: torch.Tensor):
if self.cos is not None and x.shape[0] <= self.cos.shape[0]:
return
seq_len = x.shape[0]
theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)).to(x.device)
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
idx_theta = torch.einsum('a,b->ab', seq_idx, theta)
idx_theta = torch.cat([idx_theta, idx_theta], dim=1)
self.cos = idx_theta.cos()[:, None, None, :]
self.sin = idx_theta.sin()[:, None, None, :]
def _neg_half(self, x: torch.Tensor):
d_2 = self.dim // 2
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
def forward(self, x: torch.Tensor):
self._build_cache(x)
x_rope, x_pass = x[..., :self.dim], x[..., self.dim:]
neg_half_x = self._neg_half(x_rope)
x_rope = (x_rope * self.cos[:x.shape[0]]) + (neg_half_x * self.sin[:x.shape[0]])
return torch.cat((x_rope, x_pass), dim=-1)
class RotaryMultiHeadAttention(nn.Module):
def __init__(self, config: BigBrainLanguageConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
if (self.head_dim * config.num_attention_heads) != config.hidden_size:
raise ValueError('num_embedd must be evenly divisible by num_heads')
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.rope_e = RotaryPositionalEmbedding(self.head_dim, config.rope_theta)
def _shape(self, tensor: torch.Tensor, batch_size: int, seq_len: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _reshape(self, tensor: torch.Tensor, batch_size: int, seq_len: int):
return tensor.transpose(1, 2).contiguous().reshape(batch_size, seq_len, self.hidden_size)
def forward(self, states: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
batch_size, seq_len, _ = states.size()
q_states = self.rope_e(self._shape(self.q_proj(states), batch_size, seq_len))
k_states = self.rope_e(self._shape(self.k_proj(states), batch_size, seq_len))
v_states = self._shape(self.v_proj(states), batch_size, seq_len)
attn_weights = torch.matmul(q_states, k_states.transpose(2, 3)) / math.sqrt(self.head_dim)
attn_weights = torch.clamp(attn_weights, min=-1024.0, max=1024.0)
if mask is not None:
attn_weights = attn_weights.masked_fill(mask == 0, float('-inf'))
attn_weights = f.softmax(attn_weights, dim=-1)
attn_outputs = torch.matmul(attn_weights, v_states)
return self._reshape(attn_outputs, batch_size, seq_len)
class BigBrainDecoderLayer(nn.Module):
def __init__(self, config: BigBrainLanguageConfig):
super().__init__()
self.config = config
self.self_attn = RotaryMultiHeadAttention(config)
self.feed_forward = MultiLayerPerceptron(config)
self.input_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
self.attn_norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
self.register_buffer('attn_mask', _make_casual_mask(config.max_position_embeddings))
def forward(self, x: torch.Tensor):
batch_size, seq_len, _ = x.size()
mask = self.attn_mask[:seq_len, :seq_len]
x = x + self.self_attn(self.input_norm(x), mask)
x = x + self.feed_forward(self.attn_norm(x))
return x
class BigBrainLanguageModel(PreTrainedModel):
config_class = BigBrainLanguageConfig
base_model_prefix = 'big-brain-lm'
def __init__(self, config: BigBrainLanguageConfig):
super().__init__(config)
self.config = config
self.tok_embed = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.layers = nn.ModuleList([BigBrainDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RootMeanSquareNorm(config.hidden_size, config.layer_norm_eps)
self.linear = nn.Linear(config.hidden_size, config.vocab_size)
self.post_init()
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def forward(self, input_ids: torch.Tensor, target_ids: torch.Tensor = None):
hidden_states = self.tok_embed(input_ids)
for decoder_layer in self.layers:
hidden_states = decoder_layer(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = self.linear(hidden_states)
if target_ids is None:
return hidden_states, None
b, t, c = hidden_states.size()
loss = f.cross_entropy(hidden_states.view(b * t, c), target_ids.view(b * t))
return hidden_states, loss