sgugger Marissa commited on
Commit
c0a0c51
1 Parent(s): 2a23304

Add model card (#1)

Browse files

- Add model card (e59a20061a681ab2d2bcb71c390019b4d495b763)
- Update README.md (fc071b381c0dd92310df1e41c3c42ec70c8b0f4a)


Co-authored-by: Marissa Gerchick <Marissa@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +231 -0
README.md ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - af
5
+ - am
6
+ - ar
7
+ - as
8
+ - az
9
+ - be
10
+ - bg
11
+ - bn
12
+ - br
13
+ - bs
14
+ - ca
15
+ - cs
16
+ - cy
17
+ - da
18
+ - de
19
+ - el
20
+ - en
21
+ - eo
22
+ - es
23
+ - et
24
+ - eu
25
+ - fa
26
+ - fi
27
+ - fr
28
+ - fy
29
+ - ga
30
+ - gd
31
+ - gl
32
+ - gu
33
+ - ha
34
+ - he
35
+ - hi
36
+ - hr
37
+ - hu
38
+ - hy
39
+ - id
40
+ - is
41
+ - it
42
+ - ja
43
+ - jv
44
+ - ka
45
+ - kk
46
+ - km
47
+ - kn
48
+ - ko
49
+ - ku
50
+ - ky
51
+ - la
52
+ - lo
53
+ - lt
54
+ - lv
55
+ - mg
56
+ - mk
57
+ - ml
58
+ - mn
59
+ - mr
60
+ - ms
61
+ - my
62
+ - ne
63
+ - nl
64
+ - no
65
+ - om
66
+ - or
67
+ - pa
68
+ - pl
69
+ - ps
70
+ - pt
71
+ - ro
72
+ - ru
73
+ - sa
74
+ - sd
75
+ - si
76
+ - sk
77
+ - sl
78
+ - so
79
+ - sq
80
+ - sr
81
+ - su
82
+ - sv
83
+ - sw
84
+ - ta
85
+ - te
86
+ - th
87
+ - tl
88
+ - tr
89
+ - ug
90
+ - uk
91
+ - ur
92
+ - uz
93
+ - vi
94
+ - xh
95
+ - yi
96
+ - zh
97
+ ---
98
+
99
+ # xlm-roberta-large-finetuned-conll02-dutch
100
+
101
+ # Table of Contents
102
+
103
+ 1. [Model Details](#model-details)
104
+ 2. [Uses](#uses)
105
+ 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
106
+ 4. [Training](#training)
107
+ 5. [Evaluation](#evaluation)
108
+ 6. [Environmental Impact](#environmental-impact)
109
+ 7. [Technical Specifications](#technical-specifications)
110
+ 8. [Citation](#citation)
111
+ 9. [Model Card Authors](#model-card-authors)
112
+ 10. [How To Get Started With the Model](#how-to-get-started-with-the-model)
113
+
114
+
115
+ # Model Details
116
+
117
+ ## Model Description
118
+
119
+ The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [CoNLL-2002](https://huggingface.co/datasets/conll2002) dataset in Dutch.
120
+
121
+ - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116)
122
+ - **Model type:** Multi-lingual language model
123
+ - **Language(s) (NLP):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in Dutch
124
+ - **License:** More information needed
125
+ - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm)
126
+ - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large)
127
+ - **Resources for more information:**
128
+ -[GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr)
129
+ -[Associated Paper](https://arxiv.org/abs/1911.02116)
130
+ -[CoNLL-2002 data card](https://huggingface.co/datasets/conll2002)
131
+
132
+ # Uses
133
+
134
+ ## Direct Use
135
+
136
+ The model is a language model. The model can be used for token classification, a natural language understanding task in which a label is assigned to some tokens in a text.
137
+
138
+ ## Downstream Use
139
+
140
+ Potential downstream use cases include Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. To learn more about token classification and other potential downstream use cases, see the Hugging Face [token classification docs](https://huggingface.co/tasks/token-classification).
141
+
142
+ ## Out-of-Scope Use
143
+
144
+ The model should not be used to intentionally create hostile or alienating environments for people.
145
+
146
+ # Bias, Risks, and Limitations
147
+
148
+ **CONTENT WARNING: Readers should be made aware that language generated by this model may be disturbing or offensive to some and may propagate historical and current stereotypes.**
149
+
150
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
151
+
152
+ ## Recommendations
153
+
154
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
155
+
156
+ # Training
157
+
158
+ See the following resources for training data and training procedure details:
159
+ - [XLM-RoBERTa-large model card](https://huggingface.co/xlm-roberta-large)
160
+ - [CoNLL-2002 data card](https://huggingface.co/datasets/conll2002)
161
+ - [Associated paper](https://arxiv.org/pdf/1911.02116.pdf)
162
+
163
+ # Evaluation
164
+
165
+ See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for evaluation details.
166
+
167
+ # Environmental Impact
168
+
169
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
170
+
171
+ - **Hardware Type:** 500 32GB Nvidia V100 GPUs (from the [associated paper](https://arxiv.org/pdf/1911.02116.pdf))
172
+ - **Hours used:** More information needed
173
+ - **Cloud Provider:** More information needed
174
+ - **Compute Region:** More information needed
175
+ - **Carbon Emitted:** More information needed
176
+
177
+ # Technical Specifications
178
+
179
+ See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details.
180
+
181
+ # Citation
182
+
183
+ **BibTeX:**
184
+
185
+ ```bibtex
186
+ @article{conneau2019unsupervised,
187
+ title={Unsupervised Cross-lingual Representation Learning at Scale},
188
+ author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
189
+ journal={arXiv preprint arXiv:1911.02116},
190
+ year={2019}
191
+ }
192
+ ```
193
+
194
+ **APA:**
195
+ - Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
196
+
197
+ # Model Card Authors
198
+
199
+ This model card was written by the team at Hugging Face.
200
+
201
+ # How to Get Started with the Model
202
+
203
+ Use the code below to get started with the model. You can use this model directly within a pipeline for NER.
204
+
205
+ <details>
206
+ <summary> Click to expand </summary>
207
+
208
+ ```python
209
+ >>> from transformers import AutoTokenizer, AutoModelForTokenClassification
210
+ >>> from transformers import pipeline
211
+ >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll02-dutch")
212
+ >>> model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll02-dutch")
213
+ >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer)
214
+ >>> classifier("Mijn naam is Emma en ik woon in Londen.")
215
+
216
+
217
+ [{'end': 17,
218
+ 'entity': 'B-PER',
219
+ 'index': 4,
220
+ 'score': 0.9999807,
221
+ 'start': 13,
222
+ 'word': '▁Emma'},
223
+ {'end': 36,
224
+ 'entity': 'B-LOC',
225
+ 'index': 9,
226
+ 'score': 0.9999871,
227
+ 'start': 32,
228
+ 'word': '▁Lond'}]
229
+ ```
230
+
231
+ </details>