Marissa commited on
Commit
632214e
1 Parent(s): feb8a6d

Add model card

Browse files



@Ezi



@Meg

Files changed (1) hide show
  1. README.md +129 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - fr
6
+ - es
7
+ - de
8
+ - it
9
+ - pt
10
+ - nl
11
+ - sv
12
+ - pl
13
+ - ru
14
+ - ar
15
+ - tr
16
+ - zh
17
+ - ja
18
+ - ko
19
+ - hi
20
+ - vi
21
+ license: cc-by-nc-4.0
22
+ ---
23
+
24
+ # xlm-mlm-17-1280
25
+
26
+ # Table of Contents
27
+
28
+ 1. [Model Details](#model-details)
29
+ 2. [Uses](#uses)
30
+ 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
31
+ 4. [Training](#training)
32
+ 5. [Evaluation](#evaluation)
33
+ 6. [Environmental Impact](#environmental-impact)
34
+ 7. [Citation](#citation)
35
+ 8. [Model Card Authors](#model-card-authors)
36
+ 9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
37
+
38
+
39
+ # Model Details
40
+
41
+ xlm-mlm-17-1280 is the XLM model, which was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau, trained on text in 17 languages. The model is a transformer pretrained using a masked language modeling (MLM) objective.
42
+
43
+ ## Model Description
44
+
45
+ - **Developed by:** See [associated paper](https://arxiv.org/abs/1901.07291) and [GitHub Repo](https://github.com/facebookresearch/XLM)
46
+ - **Model type:** Language model
47
+ - **Language(s) (NLP):** 17 languages, see [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for full list.
48
+ - **License:** CC-BY-NC-4.0
49
+ - **Related Models:** [xlm-mlm-17-1280](https://huggingface.co/xlm-mlm-17-1280)
50
+ - **Resources for more information:**
51
+ - [Associated paper](https://arxiv.org/abs/1901.07291)
52
+ - [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages)
53
+ - [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings)
54
+
55
+ # Uses
56
+
57
+ ## Direct Use
58
+
59
+ The model is a language model. The model can be used for masked language modeling.
60
+
61
+ ## Downstream Use
62
+
63
+ To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask) and the [Hugging Face Multilingual Models for Inference](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) docs. Also see the [associated paper](https://arxiv.org/abs/1901.07291).
64
+
65
+ ## Out-of-Scope Use
66
+
67
+ The model should not be used to intentionally create hostile or alienating environments for people.
68
+
69
+ # Bias, Risks, and Limitations
70
+
71
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
72
+
73
+ ## Recommendations
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
76
+
77
+ # Training
78
+
79
+ This model is the XLM model trained on text in 17 languages. The preprocessing included tokenization and byte-pair-encoding. See the [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) and the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details on the training data and training procedure.
80
+
81
+ # Evaluation
82
+
83
+ ## Testing Data, Factors & Metrics
84
+
85
+ The model developers evaluated the model on the XNLI cross-lingual classification task (see the [XNLI data card](https://huggingface.co/datasets/xnli) for more details on XNLI) using the metric of test accuracy. See the [GitHub Repo](https://arxiv.org/pdf/1911.02116.pdf) for further details on the testing data, factors and metrics.
86
+
87
+ ## Results
88
+
89
+ For xlm-mlm-17-1280, the test accuracy on the XNLI cross-lingual classification task in English (en), Spanish (es), German (de), Arabic (ar), and Chinese (zh):
90
+
91
+ |Language| en | es | de | ar | zh |
92
+ |:------:|:--:|:---:|:--:|:--:|:--:|
93
+ | |84.8|79.4 |76.2|71.5|75 |
94
+
95
+ See the [GitHub repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details.
96
+
97
+ # Environmental Impact
98
+
99
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
100
+
101
+ - **Hardware Type:** More information needed
102
+ - **Hours used:** More information needed
103
+ - **Cloud Provider:** More information needed
104
+ - **Compute Region:** More information needed
105
+ - **Carbon Emitted:** More information needed
106
+
107
+ # Citation
108
+
109
+ **BibTeX:**
110
+
111
+ ```bibtex
112
+ @article{lample2019cross,
113
+ title={Cross-lingual language model pretraining},
114
+ author={Lample, Guillaume and Conneau, Alexis},
115
+ journal={arXiv preprint arXiv:1901.07291},
116
+ year={2019}
117
+ }
118
+ ```
119
+
120
+ **APA:**
121
+ - Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
122
+
123
+ # Model Card Authors
124
+
125
+ This model card was written by the team at Hugging Face.
126
+
127
+ # How to Get Started with the Model
128
+
129
+ More information needed. See the [ipython notebook](https://github.com/facebookresearch/XLM/blob/main/generate-embeddings.ipynb) in the associated [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for examples.