|
import torch |
|
from torch import nn |
|
from torchvision import models, transforms |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
import gdown |
|
|
|
class AIRadModel(nn.Module): |
|
def __init__(self,num_classes=2): |
|
super(AIRadModel,self).__init__() |
|
self.model = models.efficientnet_b0(pretrained=False) |
|
self.num_features = model.classifier[1].in_features |
|
self.model.classifier = nn.Sequential( |
|
nn.Dropout(p=0.2), |
|
nn.Linear(self.num_features, num_classes) |
|
) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class AIRadSimModel(nn.Module): |
|
def __init__(self, num_classes=2): |
|
super(AIRadSimModel,self).__init__() |
|
self.sim_model = models.resnet50(pretrained=False) |
|
self.sim_model.fc = nn.Linear(self.sim_model.fc.in_features,num_classes) |
|
|
|
def forward(self,x): |
|
return self.sim_model(x) |
|
|
|
|
|
def load_model(): |
|
model = AIRadModel(num_classes=2) |
|
file_id = '1CKkdQ5nKWkz3L-ZdgyrJ5SE-oiFwXnSJ' |
|
gdrive_url = f"https://drive.google.com/uc?id={file_id}" |
|
model_checkpoint = 'model_checkpoint.pth' |
|
gdown.download(gdrive_url, model_checkpoint, quiet=False) |
|
model.load_state_dict(torch.load(model_checkpoint)) |
|
model.eval() |
|
return model |
|
|
|
def load_sim_model(): |
|
sim_model = AIRadSimModel(num_classes=2) |
|
sim_file_id = 'cjdDsW5QAIlOneOPLg0uYqTURSr0oOLq' |
|
sim_gdrive_url = f"https://drive.google.com/uc?id={file_id}" |
|
sim_model_checkpoint = 'sim_model_checkpoint.pth' |
|
gdown.download(sim_gdrive_url, sim_model_checkpoint, quiet=False) |
|
sim_model.load_state_dict(torch.load(sim_model_checkpoint)) |
|
sim_model.eval() |
|
return sim_model() |
|
|
|
model = load_model() |
|
sim_model = load_sim_model() |
|
class_names = {0: 'normal', 1: 'pneumonia'} |
|
|
|
preprocess = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def predict(image_path): |
|
image = Image.open(image_path).convert("RGB") |
|
image_np = np.array(image) |
|
image_np = cv2.bilateralFilter(image_np, 9, 75, 75) |
|
image = Image.fromarray(image_np) |
|
image_tensor = preprocess(image).unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
sim_output = sim_model(image_tensor) |
|
_, predicted_sim = torch.max(sim_output, 1) |
|
predicted_class_sim = predicted_sim.item() |
|
|
|
if predicted_class_sim == 1: |
|
with torch.no_grad(): |
|
output = model(image_tensor) |
|
_, predicted = torch.max(output, 1) |
|
predicted_class = predicted.item() |
|
confidence = torch.nn.functional.softmax(output, dim=1)[0][predicted_class].item() |
|
return class_names[predicted_class] ,confidence |
|
|
|
else: |
|
return "error" |
|
|
|
|