FLIP-base-32 / README.md
P01son's picture
Update README.md
b63c9ac
|
raw
history blame
754 Bytes
metadata
license: apache-2.0

CLIP model post-trained on 80M human face images.

from PIL import Image
import requests

from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("P01son/FaceCLIP-base-32")
processor = CLIPProcessor.from_pretrained("P01son/FaceCLIP-base-32")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)

outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities