metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- type: wer
value: 0.34075405604719766
name: Wer
wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3575
- Wer: 0.3408
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9583 | 1.0 | 278 | 2.9214 | 1.0 |
2.8606 | 2.0 | 556 | 2.7724 | 1.0 |
1.1528 | 3.0 | 834 | 0.6902 | 0.6319 |
0.7003 | 4.0 | 1112 | 0.4844 | 0.4883 |
0.5853 | 5.0 | 1390 | 0.4030 | 0.4158 |
0.4685 | 6.0 | 1668 | 0.3945 | 0.3838 |
0.4273 | 7.0 | 1946 | 0.3824 | 0.3687 |
0.4116 | 8.0 | 2224 | 0.3643 | 0.3474 |
0.3858 | 9.0 | 2502 | 0.3575 | 0.3408 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1