EzraWilliam's picture
End of training
8028334 verified
|
raw
history blame
2.13 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.45612094395280234

wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod19

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4521
  • Wer: 0.4561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9484 1.0 278 2.9258 1.0
2.8765 2.0 556 2.8077 1.0
1.3613 3.0 834 0.7209 0.6519
0.7881 4.0 1112 0.5165 0.5055
0.7009 5.0 1390 0.4753 0.4754
0.603 6.0 1668 0.4521 0.4561

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1