whisper_base_en / README.md
Eyesiga's picture
End of training
55b7ff1 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - tericlabs
metrics:
  - wer
model-index:
  - name: Whisper base english
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sunbird
          type: tericlabs
        metrics:
          - name: Wer
            type: wer
            value: 7.709497206703911

Whisper base english

This model is a fine-tuned version of openai/whisper-base.en on the Sunbird dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2710
  • Wer: 7.7095

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.395 3.33 1000 0.1988 7.4860
0.0295 6.67 2000 0.2389 7.3743
0.0026 10.0 3000 0.2645 7.5978
0.0011 13.33 4000 0.2710 7.7095

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2