result_xlmr_siqa / README.md
Erland's picture
xlm-roberta-siqa-copa
49876eb
|
raw
history blame
4.41 kB
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: result_xlmr_siqa
    results: []

result_xlmr_siqa

This model is a fine-tuned version of xlm-roberta-large on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4143
  • Accuracy: 0.79

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0152 0.2 10 1.0207 0.77
0.001 0.4 20 0.7651 0.82
0.0013 0.6 30 0.7756 0.79
0.0012 0.8 40 1.2054 0.8
0.0005 1.0 50 1.3034 0.79
0.0008 1.2 60 1.1920 0.76
0.0138 1.4 70 0.9139 0.76
0.0003 1.6 80 0.9160 0.78
0.0001 1.8 90 1.1525 0.8
0.0085 2.0 100 0.8657 0.79
0.0033 2.2 110 0.8925 0.79
0.0055 2.4 120 1.2264 0.78
0.0014 2.6 130 1.4958 0.8
0.0031 2.8 140 1.4250 0.79
0.0138 3.0 150 1.4240 0.81
0.0304 3.2 160 1.4179 0.8
0.0 3.4 170 1.4685 0.8
0.0 3.6 180 1.4897 0.8
0.0015 3.8 190 1.2689 0.8
0.0001 4.0 200 1.0355 0.78
0.0007 4.2 210 1.1339 0.77
0.0002 4.4 220 1.1915 0.79
0.0001 4.6 230 1.1300 0.8
0.001 4.8 240 1.1464 0.79
0.0001 5.0 250 1.2227 0.78
0.0 5.2 260 1.3048 0.81
0.0 5.4 270 1.3418 0.79
0.0093 5.6 280 1.3442 0.78
0.0004 5.8 290 1.2721 0.8
0.0035 6.0 300 1.1852 0.77
0.0016 6.2 310 1.1745 0.77
0.0003 6.4 320 1.1138 0.8
0.0002 6.6 330 1.2342 0.79
0.0055 6.8 340 1.3594 0.79
0.0 7.0 350 1.4109 0.79
0.0 7.2 360 1.4677 0.78
0.0 7.4 370 1.4951 0.77
0.0 7.6 380 1.4987 0.77
0.0004 7.8 390 1.4517 0.77
0.0 8.0 400 1.4632 0.77
0.0 8.2 410 1.4825 0.78
0.0008 8.4 420 1.4486 0.79
0.0 8.6 430 1.4426 0.79
0.0 8.8 440 1.4216 0.79
0.0 9.0 450 1.4166 0.79
0.0 9.2 460 1.4161 0.79
0.0 9.4 470 1.4172 0.79
0.0003 9.6 480 1.4179 0.79
0.0286 9.8 490 1.4155 0.79
0.0 10.0 500 1.4143 0.79

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.14.0