IYun-large-zh / README.md
Erin's picture
Update README.md
b62bc17 verified
metadata
tags:
  - mteb
model-index:
  - name: IYun-large-zh
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 57.37728676415047
          - type: cos_sim_spearman
            value: 60.89131895307699
          - type: euclidean_pearson
            value: 60.056754800315595
          - type: euclidean_spearman
            value: 60.891479787418966
          - type: manhattan_pearson
            value: 60.03850823371572
          - type: manhattan_spearman
            value: 60.8597150048781
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 57.29704921148904
          - type: cos_sim_spearman
            value: 58.81607331373972
          - type: euclidean_pearson
            value: 63.69251756281332
          - type: euclidean_spearman
            value: 58.81608232068536
          - type: manhattan_pearson
            value: 63.665668138742284
          - type: manhattan_spearman
            value: 58.80224314871406
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 49.672
          - type: f1
            value: 47.27737512126165
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 71.65025725548176
          - type: cos_sim_spearman
            value: 72.53278026251562
          - type: euclidean_pearson
            value: 71.29771814474996
          - type: euclidean_spearman
            value: 72.53241999594584
          - type: manhattan_pearson
            value: 71.29290351258575
          - type: manhattan_spearman
            value: 72.52505531587519
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 60.19892651814847
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 58.39897986042561
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 88.73563192647498
          - type: mrr
            value: 91.00214285714286
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 89.42396184634322
          - type: mrr
            value: 91.90503968253968
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.950000000000003
          - type: map_at_10
            value: 39.982
          - type: map_at_100
            value: 41.844
          - type: map_at_1000
            value: 41.948
          - type: map_at_3
            value: 35.664
          - type: map_at_5
            value: 38.061
          - type: mrr_at_1
            value: 41.11
          - type: mrr_at_10
            value: 49.183
          - type: mrr_at_100
            value: 50.166999999999994
          - type: mrr_at_1000
            value: 50.205999999999996
          - type: mrr_at_3
            value: 46.778
          - type: mrr_at_5
            value: 48.120000000000005
          - type: ndcg_at_1
            value: 41.11
          - type: ndcg_at_10
            value: 46.678
          - type: ndcg_at_100
            value: 53.876000000000005
          - type: ndcg_at_1000
            value: 55.627
          - type: ndcg_at_3
            value: 41.429
          - type: ndcg_at_5
            value: 43.551
          - type: precision_at_1
            value: 41.11
          - type: precision_at_10
            value: 10.325
          - type: precision_at_100
            value: 1.6119999999999999
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.498
          - type: precision_at_5
            value: 16.894000000000002
          - type: recall_at_1
            value: 26.950000000000003
          - type: recall_at_10
            value: 57.239
          - type: recall_at_100
            value: 86.9
          - type: recall_at_1000
            value: 98.581
          - type: recall_at_3
            value: 41.221000000000004
          - type: recall_at_5
            value: 47.976
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.13968597726043
          - type: cos_sim_ap
            value: 90.86724630443385
          - type: cos_sim_f1
            value: 86.9653767820774
          - type: cos_sim_precision
            value: 83.9724680432645
          - type: cos_sim_recall
            value: 90.17951425554382
          - type: dot_accuracy
            value: 86.13968597726043
          - type: dot_ap
            value: 90.85181504536696
          - type: dot_f1
            value: 86.9653767820774
          - type: dot_precision
            value: 83.9724680432645
          - type: dot_recall
            value: 90.17951425554382
          - type: euclidean_accuracy
            value: 86.13968597726043
          - type: euclidean_ap
            value: 90.86657368513809
          - type: euclidean_f1
            value: 86.95208970438327
          - type: euclidean_precision
            value: 84.03940886699507
          - type: euclidean_recall
            value: 90.07391763463569
          - type: manhattan_accuracy
            value: 85.97726042230644
          - type: manhattan_ap
            value: 90.85259484237685
          - type: manhattan_f1
            value: 86.79435483870968
          - type: manhattan_precision
            value: 83.02796528447445
          - type: manhattan_recall
            value: 90.91869060190075
          - type: max_accuracy
            value: 86.13968597726043
          - type: max_ap
            value: 90.86724630443385
          - type: max_f1
            value: 86.9653767820774
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 73.34
          - type: map_at_10
            value: 81.722
          - type: map_at_100
            value: 81.916
          - type: map_at_1000
            value: 81.919
          - type: map_at_3
            value: 80.25999999999999
          - type: map_at_5
            value: 81.11699999999999
          - type: mrr_at_1
            value: 73.551
          - type: mrr_at_10
            value: 81.727
          - type: mrr_at_100
            value: 81.911
          - type: mrr_at_1000
            value: 81.914
          - type: mrr_at_3
            value: 80.242
          - type: mrr_at_5
            value: 81.149
          - type: ndcg_at_1
            value: 73.551
          - type: ndcg_at_10
            value: 85.244
          - type: ndcg_at_100
            value: 86.005
          - type: ndcg_at_1000
            value: 86.084
          - type: ndcg_at_3
            value: 82.334
          - type: ndcg_at_5
            value: 83.878
          - type: precision_at_1
            value: 73.551
          - type: precision_at_10
            value: 9.705
          - type: precision_at_100
            value: 1.0030000000000001
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 29.645
          - type: precision_at_5
            value: 18.567
          - type: recall_at_1
            value: 73.34
          - type: recall_at_10
            value: 96.048
          - type: recall_at_100
            value: 99.262
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 88.303
          - type: recall_at_5
            value: 91.99199999999999
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.506
          - type: map_at_10
            value: 81.29899999999999
          - type: map_at_100
            value: 83.997
          - type: map_at_1000
            value: 84.03399999999999
          - type: map_at_3
            value: 56.69
          - type: map_at_5
            value: 71.389
          - type: mrr_at_1
            value: 91.10000000000001
          - type: mrr_at_10
            value: 93.952
          - type: mrr_at_100
            value: 94.00500000000001
          - type: mrr_at_1000
            value: 94.00699999999999
          - type: mrr_at_3
            value: 93.683
          - type: mrr_at_5
            value: 93.858
          - type: ndcg_at_1
            value: 91.10000000000001
          - type: ndcg_at_10
            value: 88.25699999999999
          - type: ndcg_at_100
            value: 90.84100000000001
          - type: ndcg_at_1000
            value: 91.167
          - type: ndcg_at_3
            value: 87.595
          - type: ndcg_at_5
            value: 86.346
          - type: precision_at_1
            value: 91.10000000000001
          - type: precision_at_10
            value: 42.04
          - type: precision_at_100
            value: 4.804
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 78.583
          - type: precision_at_5
            value: 66.09
          - type: recall_at_1
            value: 26.506
          - type: recall_at_10
            value: 89.12299999999999
          - type: recall_at_100
            value: 97.717
          - type: recall_at_1000
            value: 99.285
          - type: recall_at_3
            value: 58.865
          - type: recall_at_5
            value: 75.753
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 52.7
          - type: map_at_10
            value: 62.239
          - type: map_at_100
            value: 62.744
          - type: map_at_1000
            value: 62.755
          - type: map_at_3
            value: 59.75
          - type: map_at_5
            value: 61.050000000000004
          - type: mrr_at_1
            value: 52.7
          - type: mrr_at_10
            value: 62.239
          - type: mrr_at_100
            value: 62.744
          - type: mrr_at_1000
            value: 62.755
          - type: mrr_at_3
            value: 59.75
          - type: mrr_at_5
            value: 61.050000000000004
          - type: ndcg_at_1
            value: 52.7
          - type: ndcg_at_10
            value: 67.23
          - type: ndcg_at_100
            value: 69.729
          - type: ndcg_at_1000
            value: 70.00999999999999
          - type: ndcg_at_3
            value: 62.025
          - type: ndcg_at_5
            value: 64.37
          - type: precision_at_1
            value: 52.7
          - type: precision_at_10
            value: 8.309999999999999
          - type: precision_at_100
            value: 0.9490000000000001
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 22.867
          - type: precision_at_5
            value: 14.860000000000001
          - type: recall_at_1
            value: 52.7
          - type: recall_at_10
            value: 83.1
          - type: recall_at_100
            value: 94.89999999999999
          - type: recall_at_1000
            value: 97.1
          - type: recall_at_3
            value: 68.60000000000001
          - type: recall_at_5
            value: 74.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 52.64332435552135
          - type: f1
            value: 42.17147347490132
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 87.5984990619137
          - type: ap
            value: 57.59814850574554
          - type: f1
            value: 82.62140959655022
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 74.58027418203673
          - type: cos_sim_spearman
            value: 79.19473724464046
          - type: euclidean_pearson
            value: 79.2941422188887
          - type: euclidean_spearman
            value: 79.1944889378359
          - type: manhattan_pearson
            value: 79.26535092062532
          - type: manhattan_spearman
            value: 79.17298822899023
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 31.611379937191025
          - type: mrr
            value: 30.88968253968254
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 65.603
          - type: map_at_10
            value: 74.834
          - type: map_at_100
            value: 75.16199999999999
          - type: map_at_1000
            value: 75.17399999999999
          - type: map_at_3
            value: 72.979
          - type: map_at_5
            value: 74.154
          - type: mrr_at_1
            value: 67.837
          - type: mrr_at_10
            value: 75.46199999999999
          - type: mrr_at_100
            value: 75.751
          - type: mrr_at_1000
            value: 75.762
          - type: mrr_at_3
            value: 73.832
          - type: mrr_at_5
            value: 74.875
          - type: ndcg_at_1
            value: 67.837
          - type: ndcg_at_10
            value: 78.636
          - type: ndcg_at_100
            value: 80.083
          - type: ndcg_at_1000
            value: 80.394
          - type: ndcg_at_3
            value: 75.12
          - type: ndcg_at_5
            value: 77.12
          - type: precision_at_1
            value: 67.837
          - type: precision_at_10
            value: 9.536999999999999
          - type: precision_at_100
            value: 1.0250000000000001
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.352
          - type: precision_at_5
            value: 18.074
          - type: recall_at_1
            value: 65.603
          - type: recall_at_10
            value: 89.704
          - type: recall_at_100
            value: 96.2
          - type: recall_at_1000
            value: 98.588
          - type: recall_at_3
            value: 80.444
          - type: recall_at_5
            value: 85.205
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 77.43106926698049
          - type: f1
            value: 73.96808004721824
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 83.86684599865501
          - type: f1
            value: 83.05645257324346
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 55.00000000000001
          - type: map_at_10
            value: 61.129
          - type: map_at_100
            value: 61.61
          - type: map_at_1000
            value: 61.655
          - type: map_at_3
            value: 59.533
          - type: map_at_5
            value: 60.478
          - type: mrr_at_1
            value: 54.900000000000006
          - type: mrr_at_10
            value: 61.090999999999994
          - type: mrr_at_100
            value: 61.562
          - type: mrr_at_1000
            value: 61.608
          - type: mrr_at_3
            value: 59.483
          - type: mrr_at_5
            value: 60.428000000000004
          - type: ndcg_at_1
            value: 55.00000000000001
          - type: ndcg_at_10
            value: 64.288
          - type: ndcg_at_100
            value: 66.991
          - type: ndcg_at_1000
            value: 68.27
          - type: ndcg_at_3
            value: 61.014
          - type: ndcg_at_5
            value: 62.68899999999999
          - type: precision_at_1
            value: 55.00000000000001
          - type: precision_at_10
            value: 7.430000000000001
          - type: precision_at_100
            value: 0.878
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 21.767
          - type: precision_at_5
            value: 13.86
          - type: recall_at_1
            value: 55.00000000000001
          - type: recall_at_10
            value: 74.3
          - type: recall_at_100
            value: 87.8
          - type: recall_at_1000
            value: 98
          - type: recall_at_3
            value: 65.3
          - type: recall_at_5
            value: 69.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 78.48333333333333
          - type: f1
            value: 78.36516159631131
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.13968597726043
          - type: cos_sim_ap
            value: 90.86724630443385
          - type: cos_sim_f1
            value: 86.9653767820774
          - type: cos_sim_precision
            value: 83.9724680432645
          - type: cos_sim_recall
            value: 90.17951425554382
          - type: dot_accuracy
            value: 86.13968597726043
          - type: dot_ap
            value: 90.85181504536696
          - type: dot_f1
            value: 86.9653767820774
          - type: dot_precision
            value: 83.9724680432645
          - type: dot_recall
            value: 90.17951425554382
          - type: euclidean_accuracy
            value: 86.13968597726043
          - type: euclidean_ap
            value: 90.86657368513809
          - type: euclidean_f1
            value: 86.95208970438327
          - type: euclidean_precision
            value: 84.03940886699507
          - type: euclidean_recall
            value: 90.07391763463569
          - type: manhattan_accuracy
            value: 85.97726042230644
          - type: manhattan_ap
            value: 90.85259484237685
          - type: manhattan_f1
            value: 86.79435483870968
          - type: manhattan_precision
            value: 83.02796528447445
          - type: manhattan_recall
            value: 90.91869060190075
          - type: max_accuracy
            value: 86.13968597726043
          - type: max_ap
            value: 90.86724630443385
          - type: max_f1
            value: 86.9653767820774
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 94.33999999999999
          - type: ap
            value: 92.566213965377
          - type: f1
            value: 94.32981412505542
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 40.59979992480721
          - type: cos_sim_spearman
            value: 45.80272854477526
          - type: euclidean_pearson
            value: 45.51435650601272
          - type: euclidean_spearman
            value: 45.80481880049892
          - type: manhattan_pearson
            value: 45.50783698090448
          - type: manhattan_spearman
            value: 45.7962835896273
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 41.95530336245604
          - type: cos_sim_spearman
            value: 43.94205325290135
          - type: euclidean_pearson
            value: 38.01893281522651
          - type: euclidean_spearman
            value: 43.9411389356089
          - type: manhattan_pearson
            value: 38.158512461951446
          - type: manhattan_spearman
            value: 44.055211140130815
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.64131281514482
          - type: cos_sim_spearman
            value: 65.17753570208333
          - type: euclidean_pearson
            value: 62.72868744500848
          - type: euclidean_spearman
            value: 65.17730738350589
          - type: manhattan_pearson
            value: 62.76099444782981
          - type: manhattan_spearman
            value: 65.2421498595002
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 79.15762053490425
          - type: cos_sim_spearman
            value: 79.47824157657848
          - type: euclidean_pearson
            value: 79.11217669696227
          - type: euclidean_spearman
            value: 79.47857091559331
          - type: manhattan_pearson
            value: 79.07701011877683
          - type: manhattan_spearman
            value: 79.43942682897884
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 67.45068053105526
          - type: mrr
            value: 77.63560439973777
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.837
          - type: map_at_10
            value: 77.803
          - type: map_at_100
            value: 81.402
          - type: map_at_1000
            value: 81.464
          - type: map_at_3
            value: 54.879
          - type: map_at_5
            value: 67.32900000000001
          - type: mrr_at_1
            value: 90.584
          - type: mrr_at_10
            value: 93.059
          - type: mrr_at_100
            value: 93.135
          - type: mrr_at_1000
            value: 93.138
          - type: mrr_at_3
            value: 92.659
          - type: mrr_at_5
            value: 92.914
          - type: ndcg_at_1
            value: 90.584
          - type: ndcg_at_10
            value: 85.29299999999999
          - type: ndcg_at_100
            value: 88.824
          - type: ndcg_at_1000
            value: 89.4
          - type: ndcg_at_3
            value: 86.79599999999999
          - type: ndcg_at_5
            value: 85.353
          - type: precision_at_1
            value: 90.584
          - type: precision_at_10
            value: 42.191
          - type: precision_at_100
            value: 5.0200000000000005
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.785
          - type: precision_at_5
            value: 63.417
          - type: recall_at_1
            value: 27.837
          - type: recall_at_10
            value: 84.21600000000001
          - type: recall_at_100
            value: 95.719
          - type: recall_at_1000
            value: 98.565
          - type: recall_at_3
            value: 56.574999999999996
          - type: recall_at_5
            value: 70.682
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 54.37
          - type: f1
            value: 52.57500124627352
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 76.9781904739968
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 69.82661181746705
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 58.699999999999996
          - type: map_at_10
            value: 68.512
          - type: map_at_100
            value: 69.018
          - type: map_at_1000
            value: 69.028
          - type: map_at_3
            value: 66.51700000000001
          - type: map_at_5
            value: 67.91199999999999
          - type: mrr_at_1
            value: 58.599999999999994
          - type: mrr_at_10
            value: 68.462
          - type: mrr_at_100
            value: 68.96799999999999
          - type: mrr_at_1000
            value: 68.978
          - type: mrr_at_3
            value: 66.467
          - type: mrr_at_5
            value: 67.862
          - type: ndcg_at_1
            value: 58.699999999999996
          - type: ndcg_at_10
            value: 72.88900000000001
          - type: ndcg_at_100
            value: 75.262
          - type: ndcg_at_1000
            value: 75.48700000000001
          - type: ndcg_at_3
            value: 68.96
          - type: ndcg_at_5
            value: 71.452
          - type: precision_at_1
            value: 58.699999999999996
          - type: precision_at_10
            value: 8.64
          - type: precision_at_100
            value: 0.9730000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.333
          - type: precision_at_5
            value: 16.400000000000002
          - type: recall_at_1
            value: 58.699999999999996
          - type: recall_at_10
            value: 86.4
          - type: recall_at_100
            value: 97.3
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 76
          - type: recall_at_5
            value: 82
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.23
          - type: ap
            value: 75.03115536738895
          - type: f1
            value: 87.71601665295442

使用方法

from sentence_transformers import SentenceTransformer

sentences = ["sentence1", "sentence2"]
model = SentenceTransformer('IYun-large-zh')
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)