metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.934169279
- name: NER Recall
type: recall
value: 0.9445324881
- name: NER F Score
type: f_score
value: 0.939322301
Feature | Description |
---|---|
Name | en_pipeline |
Version | 0.0.0 |
spaCy | >=3.4.1,<3.5.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (20 labels for 1 components)
Component | Labels |
---|---|
ner |
APPLICATIONS , COLLEGE , COMMENT , CURRENCY , FIGURE , FURNITURE , GADGET , GPE , INSTITUITIONS , LOCATION , ORG , PEOPLE , PERIOD , PERSON , PROGRAM , SHELTER , SKILL , TIME , WEATHER CONDITION , YEAR |
Accuracy
Type | Score |
---|---|
ENTS_F |
93.93 |
ENTS_P |
93.42 |
ENTS_R |
94.45 |
TOK2VEC_LOSS |
25728.50 |
NER_LOSS |
421749.70 |