sparse / ms-swift /tests /tuners /test_peft.py
Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
import copy
import os
import shutil
import tempfile
import unittest
import peft
import torch
from modelscope import Preprocessor
from modelscope.models.nlp.structbert import SbertConfig, SbertForSequenceClassification
from peft import PeftModel, inject_adapter_in_model
from peft.config import PeftConfigMixin
from peft.tuners.lora import Linear
from peft.utils import WEIGHTS_NAME
from torch import nn
from swift import AdaLoraConfig, LoraConfig, LoRAConfig, Swift, get_peft_model
class TestPeft(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
def test_peft_lora_injection(self):
model = SbertForSequenceClassification(SbertConfig())
model2 = copy.deepcopy(model)
lora_config = LoraConfig(target_modules=['query', 'key', 'value'])
model = Swift.prepare_model(model, lora_config)
model.save_pretrained(self.tmp_dir, safe_serialization=False)
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
f.write('{}')
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME)))
model2 = Swift.from_pretrained(model2, self.tmp_dir)
state_dict = model.state_dict()
state_dict2 = model2.state_dict()
for key in state_dict:
self.assertTrue(key in state_dict2)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
@unittest.skip
def test_lora_merge(self):
def reset_lora_parameters(self, adapter_name, init_lora_weights):
if init_lora_weights is False:
return
if adapter_name == 'default':
ratio = 1.0
elif adapter_name == 'second':
ratio = 2.0
else:
ratio = 3.0
if adapter_name in self.lora_A.keys():
nn.init.ones_(self.lora_A[adapter_name].weight)
self.lora_A[adapter_name].weight.data = self.lora_A[adapter_name].weight.data * ratio
nn.init.ones_(self.lora_B[adapter_name].weight)
Linear.reset_lora_parameters = reset_lora_parameters
model = SbertForSequenceClassification(SbertConfig())
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
model = Swift.prepare_model(model, lora_config)
lora_config2 = LoRAConfig(target_modules=['query', 'key', 'value'])
model = Swift.prepare_model(model, {'second': lora_config2})
model.add_weighted_adapter(['default', 'second'],
weights=[0.7, 0.3],
adapter_name='test',
combination_type='cat')
self.assertTrue(model.base_model.bert.encoder.layer[0].attention.self.key.active_adapter == ['test'])
model2 = SbertForSequenceClassification(SbertConfig())
lora_config = LoraConfig(target_modules=['query', 'key', 'value'])
model2 = get_peft_model(model2, lora_config)
lora_config2 = LoraConfig(target_modules=['query', 'key', 'value'])
inject_adapter_in_model(lora_config2, model2, adapter_name='second')
model2.add_weighted_adapter(['default', 'second'],
weights=[0.7, 0.3],
adapter_name='test',
combination_type='cat')
state_dict = model.state_dict()
state_dict2 = model2.state_dict()
state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key}
for key in state_dict:
self.assertTrue(key in state_dict2)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
inputs = preprocessor('how are you')
print(model(**inputs))
model.save_pretrained(self.tmp_dir)
model3 = SbertForSequenceClassification(SbertConfig())
model3 = Swift.from_pretrained(model3, self.tmp_dir)
state_dict3 = model3.state_dict()
for key in state_dict:
self.assertTrue(key in state_dict3)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict3[key]).flatten().detach().cpu()))
def test_lora_reload_by_peft(self):
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
model = SbertForSequenceClassification(SbertConfig())
model2 = copy.deepcopy(model)
model = Swift.prepare_model(model, lora_config)
model.save_pretrained(self.tmp_dir, peft_format=True)
model2 = PeftModel.from_pretrained(model2, self.tmp_dir)
state_dict = model.state_dict()
state_dict2 = model2.state_dict()
state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key}
for key in state_dict:
self.assertTrue(key in state_dict2)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
def test_peft_adalora_injection(self):
model = SbertForSequenceClassification(SbertConfig())
model2 = copy.deepcopy(model)
adalora_config = AdaLoraConfig(target_modules=['query', 'key', 'value'], total_step=1)
model = Swift.prepare_model(model, adalora_config)
model.save_pretrained(self.tmp_dir, safe_serialization=False)
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
f.write('{}')
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME)))
model2 = Swift.from_pretrained(model2, self.tmp_dir)
state_dict = model.state_dict()
state_dict2 = model2.state_dict()
for key in state_dict:
self.assertTrue(key in state_dict2)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
@unittest.skip
def test_peft_lora_dtype(self):
model = SbertForSequenceClassification(SbertConfig())
model2 = copy.deepcopy(model)
model3 = copy.deepcopy(model)
lora_config = LoraConfig(target_modules=['query', 'key', 'value'], lora_dtype='float16')
model = Swift.prepare_model(model, lora_config)
model.save_pretrained(self.tmp_dir, safe_serialization=False)
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'additional_config.json')))
model2 = Swift.from_pretrained(model2, self.tmp_dir)
self.assertTrue(model2.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype ==
torch.float16)
self.assertTrue(model2.peft_config['default'].lora_dtype == 'float16')
state_dict = model.state_dict()
state_dict2 = model2.state_dict()
for key in state_dict:
self.assertTrue(key in state_dict2)
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
PeftConfigMixin.from_pretrained = PeftConfigMixin.from_pretrained_origin
model3 = Swift.from_pretrained(model3, self.tmp_dir)
self.assertTrue(model3.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype ==
torch.float32)
self.assertTrue(isinstance(model3.peft_config['default'], peft.LoraConfig))