import copy import os import shutil import tempfile import unittest import peft import torch from modelscope import Preprocessor from modelscope.models.nlp.structbert import SbertConfig, SbertForSequenceClassification from peft import PeftModel, inject_adapter_in_model from peft.config import PeftConfigMixin from peft.tuners.lora import Linear from peft.utils import WEIGHTS_NAME from torch import nn from swift import AdaLoraConfig, LoraConfig, LoRAConfig, Swift, get_peft_model class TestPeft(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() def test_peft_lora_injection(self): model = SbertForSequenceClassification(SbertConfig()) model2 = copy.deepcopy(model) lora_config = LoraConfig(target_modules=['query', 'key', 'value']) model = Swift.prepare_model(model, lora_config) model.save_pretrained(self.tmp_dir, safe_serialization=False) with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f: f.write('{}') self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME))) model2 = Swift.from_pretrained(model2, self.tmp_dir) state_dict = model.state_dict() state_dict2 = model2.state_dict() for key in state_dict: self.assertTrue(key in state_dict2) self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu())) @unittest.skip def test_lora_merge(self): def reset_lora_parameters(self, adapter_name, init_lora_weights): if init_lora_weights is False: return if adapter_name == 'default': ratio = 1.0 elif adapter_name == 'second': ratio = 2.0 else: ratio = 3.0 if adapter_name in self.lora_A.keys(): nn.init.ones_(self.lora_A[adapter_name].weight) self.lora_A[adapter_name].weight.data = self.lora_A[adapter_name].weight.data * ratio nn.init.ones_(self.lora_B[adapter_name].weight) Linear.reset_lora_parameters = reset_lora_parameters model = SbertForSequenceClassification(SbertConfig()) lora_config = LoRAConfig(target_modules=['query', 'key', 'value']) model = Swift.prepare_model(model, lora_config) lora_config2 = LoRAConfig(target_modules=['query', 'key', 'value']) model = Swift.prepare_model(model, {'second': lora_config2}) model.add_weighted_adapter(['default', 'second'], weights=[0.7, 0.3], adapter_name='test', combination_type='cat') self.assertTrue(model.base_model.bert.encoder.layer[0].attention.self.key.active_adapter == ['test']) model2 = SbertForSequenceClassification(SbertConfig()) lora_config = LoraConfig(target_modules=['query', 'key', 'value']) model2 = get_peft_model(model2, lora_config) lora_config2 = LoraConfig(target_modules=['query', 'key', 'value']) inject_adapter_in_model(lora_config2, model2, adapter_name='second') model2.add_weighted_adapter(['default', 'second'], weights=[0.7, 0.3], adapter_name='test', combination_type='cat') state_dict = model.state_dict() state_dict2 = model2.state_dict() state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key} for key in state_dict: self.assertTrue(key in state_dict2) self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu())) preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base') inputs = preprocessor('how are you') print(model(**inputs)) model.save_pretrained(self.tmp_dir) model3 = SbertForSequenceClassification(SbertConfig()) model3 = Swift.from_pretrained(model3, self.tmp_dir) state_dict3 = model3.state_dict() for key in state_dict: self.assertTrue(key in state_dict3) self.assertTrue(all(torch.isclose(state_dict[key], state_dict3[key]).flatten().detach().cpu())) def test_lora_reload_by_peft(self): lora_config = LoRAConfig(target_modules=['query', 'key', 'value']) model = SbertForSequenceClassification(SbertConfig()) model2 = copy.deepcopy(model) model = Swift.prepare_model(model, lora_config) model.save_pretrained(self.tmp_dir, peft_format=True) model2 = PeftModel.from_pretrained(model2, self.tmp_dir) state_dict = model.state_dict() state_dict2 = model2.state_dict() state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key} for key in state_dict: self.assertTrue(key in state_dict2) self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu())) def test_peft_adalora_injection(self): model = SbertForSequenceClassification(SbertConfig()) model2 = copy.deepcopy(model) adalora_config = AdaLoraConfig(target_modules=['query', 'key', 'value'], total_step=1) model = Swift.prepare_model(model, adalora_config) model.save_pretrained(self.tmp_dir, safe_serialization=False) with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f: f.write('{}') self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME))) model2 = Swift.from_pretrained(model2, self.tmp_dir) state_dict = model.state_dict() state_dict2 = model2.state_dict() for key in state_dict: self.assertTrue(key in state_dict2) self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu())) @unittest.skip def test_peft_lora_dtype(self): model = SbertForSequenceClassification(SbertConfig()) model2 = copy.deepcopy(model) model3 = copy.deepcopy(model) lora_config = LoraConfig(target_modules=['query', 'key', 'value'], lora_dtype='float16') model = Swift.prepare_model(model, lora_config) model.save_pretrained(self.tmp_dir, safe_serialization=False) self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'additional_config.json'))) model2 = Swift.from_pretrained(model2, self.tmp_dir) self.assertTrue(model2.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype == torch.float16) self.assertTrue(model2.peft_config['default'].lora_dtype == 'float16') state_dict = model.state_dict() state_dict2 = model2.state_dict() for key in state_dict: self.assertTrue(key in state_dict2) self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu())) PeftConfigMixin.from_pretrained = PeftConfigMixin.from_pretrained_origin model3 = Swift.from_pretrained(model3, self.tmp_dir) self.assertTrue(model3.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype == torch.float32) self.assertTrue(isinstance(model3.peft_config['default'], peft.LoraConfig))