sparse / ms-swift /tests /train /test_liger.py
Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
kwargs = {
'per_device_train_batch_size': 2,
'save_steps': 30,
'gradient_accumulation_steps': 2,
'num_train_epochs': 1,
}
def test_sft():
from swift.llm import sft_main, TrainArguments, infer_main, InferArguments
result = sft_main(
TrainArguments(
model='Qwen/Qwen2.5-7B-Instruct',
dataset=['swift/self-cognition#200'],
split_dataset_ratio=0.01,
use_liger_kernel=True,
**kwargs))
last_model_checkpoint = result['last_model_checkpoint']
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True))
def test_mllm_dpo():
os.environ['MAX_PIXLES'] = f'{1280 * 28 * 28}'
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments
result = rlhf_main(
RLHFArguments(
rlhf_type='dpo',
model='Qwen/Qwen2.5-VL-3B-Instruct',
train_type='full',
dataset=['swift/RLAIF-V-Dataset#1000'],
split_dataset_ratio=0.01,
dataset_num_proc=8,
deepspeed='zero3',
use_liger_kernel=True,
**kwargs))
last_model_checkpoint = result['last_model_checkpoint']
infer_main(InferArguments(ckpt_dir=last_model_checkpoint, load_data_args=True))
if __name__ == '__main__':
test_sft()
# test_mllm_dpo()