|
import os |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' |
|
kwargs = { |
|
'per_device_train_batch_size': 2, |
|
'save_steps': 30, |
|
'gradient_accumulation_steps': 2, |
|
'num_train_epochs': 1, |
|
} |
|
|
|
|
|
def test_sft(): |
|
from swift.llm import sft_main, TrainArguments, infer_main, InferArguments |
|
result = sft_main( |
|
TrainArguments( |
|
model='Qwen/Qwen2.5-7B-Instruct', |
|
dataset=['swift/self-cognition#200'], |
|
split_dataset_ratio=0.01, |
|
use_liger_kernel=True, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) |
|
|
|
|
|
def test_mllm_dpo(): |
|
os.environ['MAX_PIXLES'] = f'{1280 * 28 * 28}' |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='dpo', |
|
model='Qwen/Qwen2.5-VL-3B-Instruct', |
|
train_type='full', |
|
dataset=['swift/RLAIF-V-Dataset#1000'], |
|
split_dataset_ratio=0.01, |
|
dataset_num_proc=8, |
|
deepspeed='zero3', |
|
use_liger_kernel=True, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(ckpt_dir=last_model_checkpoint, load_data_args=True)) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_sft() |
|
|
|
|