import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' kwargs = { 'per_device_train_batch_size': 2, 'save_steps': 30, 'gradient_accumulation_steps': 2, 'num_train_epochs': 1, } def test_sft(): from swift.llm import sft_main, TrainArguments, infer_main, InferArguments result = sft_main( TrainArguments( model='Qwen/Qwen2.5-7B-Instruct', dataset=['swift/self-cognition#200'], split_dataset_ratio=0.01, use_liger_kernel=True, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) def test_mllm_dpo(): os.environ['MAX_PIXLES'] = f'{1280 * 28 * 28}' from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='dpo', model='Qwen/Qwen2.5-VL-3B-Instruct', train_type='full', dataset=['swift/RLAIF-V-Dataset#1000'], split_dataset_ratio=0.01, dataset_num_proc=8, deepspeed='zero3', use_liger_kernel=True, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(ckpt_dir=last_model_checkpoint, load_data_args=True)) if __name__ == '__main__': test_sft() # test_mllm_dpo()