|
import os |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' |
|
|
|
kwargs = { |
|
'per_device_train_batch_size': 2, |
|
'per_device_eval_batch_size': 2, |
|
'save_steps': 50, |
|
'gradient_accumulation_steps': 1, |
|
'num_train_epochs': 1, |
|
} |
|
|
|
SYSTEM_PROMPT = ('A conversation between User and Assistant. The user asks a question, and the Assistant solves it. ' |
|
'The assistant first thinks about the reasoning process in the mind and then provides the user ' |
|
'with the answer. The reasoning process and answer are enclosed within <think> </think> ' |
|
'and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> ' |
|
'answer here </answer>') |
|
|
|
|
|
def test_llm(): |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='grpo', |
|
model='Qwen/Qwen2.5-1.5B-Instruct', |
|
train_type='full', |
|
dataset=['AI-MO/NuminaMath-TIR#100'], |
|
split_dataset_ratio=0.1, |
|
system=SYSTEM_PROMPT, |
|
reward_funcs=['accuracy', 'format'], |
|
max_completion_length=4096, |
|
num_generations=2, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) |
|
|
|
|
|
def test_llm_zero2(): |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='grpo', |
|
model='Qwen/Qwen2.5-1.5B-Instruct', |
|
train_type='full', |
|
dataset=['AI-MO/NuminaMath-TIR#100'], |
|
system=SYSTEM_PROMPT, |
|
reward_funcs=['accuracy', 'format'], |
|
max_completion_length=4096, |
|
num_generations=2, |
|
deepspeed='zero2', |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) |
|
|
|
|
|
def test_llm_vllm(): |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='grpo', |
|
model='Qwen/Qwen2.5-1.5B-Instruct', |
|
reward_model='AI-ModelScope/GRM_Llama3.1_8B_rewardmodel-ft', |
|
train_type='full', |
|
dataset=['AI-MO/NuminaMath-TIR#100'], |
|
system=SYSTEM_PROMPT, |
|
reward_funcs=['accuracy', 'format'], |
|
use_vllm=True, |
|
max_completion_length=4096, |
|
num_generations=2, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) |
|
|
|
|
|
def test_llm_vllm_zero2(): |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='grpo', |
|
model='Qwen/Qwen2.5-1.5B-Instruct', |
|
train_type='full', |
|
dataset=['AI-MO/NuminaMath-TIR#100'], |
|
system=SYSTEM_PROMPT, |
|
reward_funcs=['accuracy', 'format'], |
|
use_vllm=True, |
|
max_completion_length=4096, |
|
num_generations=2, |
|
deepspeed='zero2', |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) |
|
|
|
|
|
def test_mllm_pt(): |
|
from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments |
|
result = rlhf_main( |
|
RLHFArguments( |
|
rlhf_type='grpo', |
|
model='Qwen/Qwen2-VL-2B-Instruct', |
|
train_type='full', |
|
|
|
dataset=['modelscope/coco_2014_caption:validation#100'], |
|
system=SYSTEM_PROMPT, |
|
reward_funcs=['format'], |
|
max_completion_length=4096, |
|
num_generations=2, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
test_mllm_pt() |
|
|