import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' kwargs = { 'per_device_train_batch_size': 2, 'per_device_eval_batch_size': 2, 'save_steps': 50, 'gradient_accumulation_steps': 1, 'num_train_epochs': 1, } SYSTEM_PROMPT = ('A conversation between User and Assistant. The user asks a question, and the Assistant solves it. ' 'The assistant first thinks about the reasoning process in the mind and then provides the user ' 'with the answer. The reasoning process and answer are enclosed within ' 'and tags, respectively, i.e., reasoning process here ' 'answer here ') def test_llm(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='grpo', model='Qwen/Qwen2.5-1.5B-Instruct', train_type='full', dataset=['AI-MO/NuminaMath-TIR#100'], split_dataset_ratio=0.1, system=SYSTEM_PROMPT, reward_funcs=['accuracy', 'format'], max_completion_length=4096, num_generations=2, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_llm_zero2(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='grpo', model='Qwen/Qwen2.5-1.5B-Instruct', train_type='full', dataset=['AI-MO/NuminaMath-TIR#100'], system=SYSTEM_PROMPT, reward_funcs=['accuracy', 'format'], max_completion_length=4096, num_generations=2, deepspeed='zero2', **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_llm_vllm(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='grpo', model='Qwen/Qwen2.5-1.5B-Instruct', reward_model='AI-ModelScope/GRM_Llama3.1_8B_rewardmodel-ft', train_type='full', dataset=['AI-MO/NuminaMath-TIR#100'], system=SYSTEM_PROMPT, reward_funcs=['accuracy', 'format'], use_vllm=True, max_completion_length=4096, num_generations=2, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_llm_vllm_zero2(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='grpo', model='Qwen/Qwen2.5-1.5B-Instruct', train_type='full', dataset=['AI-MO/NuminaMath-TIR#100'], system=SYSTEM_PROMPT, reward_funcs=['accuracy', 'format'], use_vllm=True, max_completion_length=4096, num_generations=2, deepspeed='zero2', **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_mllm_pt(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='grpo', model='Qwen/Qwen2-VL-2B-Instruct', train_type='full', # dataset=['AI-MO/NuminaMath-TIR#100'], dataset=['modelscope/coco_2014_caption:validation#100'], system=SYSTEM_PROMPT, reward_funcs=['format'], max_completion_length=4096, num_generations=2, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) if __name__ == '__main__': # test_llm() # test_llm_zero3() # test_llm_vllm() # test_llm_vllm_zero2() test_mllm_pt()