|
import os |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
|
|
kwargs = { |
|
'per_device_train_batch_size': 2, |
|
'per_device_eval_batch_size': 2, |
|
'save_steps': 50, |
|
'gradient_accumulation_steps': 4, |
|
'num_train_epochs': 1, |
|
} |
|
|
|
|
|
def test_llm(): |
|
from swift.llm import TrainArguments, sft_main, infer_main, InferArguments |
|
result = sft_main( |
|
TrainArguments( |
|
model='Qwen/Qwen2.5-1.5B-Instruct', |
|
train_type='lora', |
|
num_labels=2, |
|
dataset=['DAMO_NLP/jd:cls#2000'], |
|
split_dataset_ratio=0.01, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) |
|
|
|
|
|
def test_bert(): |
|
|
|
from swift.llm import TrainArguments, sft_main, infer_main, InferArguments |
|
result = sft_main( |
|
TrainArguments( |
|
model='answerdotai/ModernBERT-base', |
|
|
|
train_type='full', |
|
num_labels=2, |
|
dataset=['DAMO_NLP/jd:cls#2000'], |
|
split_dataset_ratio=0.01, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(model=last_model_checkpoint, load_data_args=True)) |
|
|
|
|
|
def test_mllm(): |
|
from swift.llm import TrainArguments, sft_main, infer_main, InferArguments |
|
result = sft_main( |
|
TrainArguments( |
|
model='OpenGVLab/InternVL2-1B', |
|
train_type='lora', |
|
num_labels=2, |
|
dataset=['DAMO_NLP/jd:cls#500'], |
|
split_dataset_ratio=0.01, |
|
**kwargs)) |
|
last_model_checkpoint = result['last_model_checkpoint'] |
|
infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
test_mllm() |
|
|