import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' kwargs = { 'per_device_train_batch_size': 2, 'per_device_eval_batch_size': 2, 'save_steps': 50, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, } def test_llm(): from swift.llm import TrainArguments, sft_main, infer_main, InferArguments result = sft_main( TrainArguments( model='Qwen/Qwen2.5-1.5B-Instruct', train_type='lora', num_labels=2, dataset=['DAMO_NLP/jd:cls#2000'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) def test_bert(): from swift.llm import TrainArguments, sft_main, infer_main, InferArguments result = sft_main( TrainArguments( model='answerdotai/ModernBERT-base', # model='iic/nlp_structbert_backbone_base_std', train_type='full', num_labels=2, dataset=['DAMO_NLP/jd:cls#2000'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(model=last_model_checkpoint, load_data_args=True)) def test_mllm(): from swift.llm import TrainArguments, sft_main, infer_main, InferArguments result = sft_main( TrainArguments( model='OpenGVLab/InternVL2-1B', train_type='lora', num_labels=2, dataset=['DAMO_NLP/jd:cls#500'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True)) if __name__ == '__main__': # test_llm() # test_bert() test_mllm()