Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright 2023-present the HuggingFace Inc. team.
import os.path
from dataclasses import asdict, dataclass, field
from functools import partial, reduce
from types import MethodType
from typing import Dict, Optional
import json
import peft
import torch
import torch.nn
import transformers
from modelscope import snapshot_download
from peft import (AdaLoraConfig, BOFTConfig, BOFTModel, LoftQConfig, LoHaConfig, LoKrConfig, LoraModel, OFTConfig,
PeftConfig, PeftModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM,
PeftModelForSequenceClassification, PeftModelForTokenClassification, PrefixTuningConfig,
PromptEncoderConfig, PromptLearningConfig, PromptTuningConfig, VeraConfig, VeraModel, get_peft_config,
get_peft_model, get_peft_model_state_dict)
from peft.config import PeftConfigMixin
from peft.tuners import lora
from peft.tuners.adalora import AdaLoraModel, RankAllocator
from peft.tuners.lora import Embedding
from transformers import Trainer
from swift.utils import get_logger
try:
from peft import FourierFTModel
except ImportError:
FourierFTModel = None
try:
from peft import BoneModel
except ImportError:
BoneModel = None
logger = get_logger()
dispatchers = []
@dataclass
class LoraConfig(peft.LoraConfig):
lora_dtype: Optional[str] = field(
default=None, metadata={'help': 'The lora dtype, default None means following the original layer\'s dtype'})
lorap_lr_ratio: Optional[float] = field(default=None, metadata={'help': 'The lr ratio of lora_B in lora+'})
lorap_emb_lr: float = field(default=1e-6, metadata={'help': 'The lr for embedding in lora+'})
def to_peft_config(self) -> peft.LoraConfig:
_dict = asdict(self)
_dict.pop('lora_dtype')
_dict.pop('lorap_lr_ratio')
_dict.pop('lorap_emb_lr')
return peft.LoraConfig(**_dict)
def save_pretrained(self, save_directory: str, **kwargs) -> None:
self.to_peft_config().save_pretrained(save_directory, **kwargs)
additional_args = {
'lora_dtype': self.lora_dtype,
'lorap_lr_ratio': self.lorap_lr_ratio,
'lorap_emb_lr': self.lorap_emb_lr,
}
with open(os.path.join(save_directory, 'additional_config.json'), 'w', encoding='utf-8') as f:
json.dump(additional_args, f)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs):
if hasattr(PeftConfigMixin, 'from_pretrained_origin'):
self = PeftConfigMixin.from_pretrained_origin(pretrained_model_name_or_path, subfolder, **kwargs)
else:
self = super(LoraConfig, cls).from_pretrained(pretrained_model_name_or_path, subfolder, **kwargs)
if type(self) == peft.LoraConfig:
self = LoraConfig(**self.to_dict())
if os.path.isfile(os.path.join(pretrained_model_name_or_path, 'additional_config.json')):
with open(
os.path.join(pretrained_model_name_or_path, 'additional_config.json'), 'r', encoding='utf-8') as f:
_json = json.load(f)
for key, value in _json.items():
setattr(self, key, value)
return self
def _create_and_replace_hook(self, peft_config, adapter_name, target, *args, **kwargs):
all_supported_names = ('linear', )
all_supported_types = (torch.nn.Embedding, torch.nn.Conv2d, transformers.pytorch_utils.Conv1D, lora.Linear)
target_modules = getattr(peft_config, 'target_modules', None)
if target is None:
return
if isinstance(target_modules, str) and not any(
[name in target.__class__.__name__.lower()
for name in all_supported_names]) and not any([isinstance(target, type_) for type_ in all_supported_types]):
return
if target.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
return
return self._create_and_replace_origin(peft_config, adapter_name, target, *args, **kwargs)
def _convert_dtype(target: torch.nn.Module, adapter_name: str, lora_dtype: str):
if lora_dtype is not None:
torch_dtype = eval(f'torch.{lora_dtype}')
if hasattr(target, 'lora_A') and adapter_name in target.lora_A:
target.lora_A[adapter_name].to(torch_dtype)
target.lora_B[adapter_name].to(torch_dtype)
if hasattr(target, 'lora_embedding_A') and adapter_name in target.lora_embedding_A:
target.lora_embedding_A[adapter_name].to(torch_dtype)
target.lora_embedding_B[adapter_name].to(torch_dtype)
def create_optimizer_param_groups(self: PeftModel, **defaults):
if not isinstance(self.peft_config[self.active_adapter],
LoraConfig) or self.peft_config[self.active_adapter].lorap_lr_ratio is None:
return None
def get_module(name):
parent_idx = 2 if 'lora' in name else 1
module_names = name.split(sep='.')[:-parent_idx]
module = reduce(getattr, module_names, self.base_model)
return module
param_groups = {
'groupA': {},
'groupB': {},
'groupB_no_decay': {},
'embedding': {},
}
decay_parameters = Trainer.get_decay_parameter_names(None, self.base_model)
for name, param in self.base_model.named_parameters():
if not param.requires_grad:
continue
module = get_module(name)
if isinstance(module, Embedding):
param_groups['embedding'][name] = param
elif 'lora_B' in name or param.ndim == 1:
if name in decay_parameters:
param_groups['groupB'][name] = param
else:
param_groups['groupB_no_decay'][name] = param
else:
param_groups['groupA'][name] = param
lr = defaults['lr']
weight_decay = defaults.get('weight_decay', 0.0)
param_groups = [
{
'params': list(param_groups['groupA'].values()),
'weight_decay': weight_decay,
'lr': lr,
},
{
'params': list(param_groups['embedding'].values()),
'weight_decay': weight_decay,
'lr': self.peft_config[self.active_adapter].lorap_emb_lr,
},
{
'params': list(param_groups['groupB'].values()),
'weight_decay': weight_decay,
'lr': lr * self.peft_config[self.active_adapter].lorap_lr_ratio,
},
{
'params': list(param_groups['groupB_no_decay'].values()),
'weight_decay': 0.0,
'lr': lr * self.peft_config[self.active_adapter].lorap_lr_ratio,
},
]
return param_groups
def adalora_forward(self, *args, **kwargs):
from peft.utils.integrations import gather_params_ctx
outputs = self.model.forward(*args, **kwargs)
if (getattr(outputs, 'loss', None) is not None) and isinstance(outputs.loss, torch.Tensor):
# Calculate the orthogonal regularization
orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight
if orth_reg_weight <= 0:
raise ValueError('orth_reg_weight should be greater than 0. ')
regu_loss = 0
num_param = 0
for n, p in self.model.named_parameters():
if ('lora_A' in n or 'lora_B' in n) and self.trainable_adapter_name in n:
if p.shape == torch.Size([0]):
with gather_params_ctx(p, fwd_module=self):
para_cov = p @ p.T if 'lora_A' in n else p.T @ p
else:
para_cov = p @ p.T if 'lora_A' in n else p.T @ p
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) # noqa: E741
I.requires_grad = False
num_param += 1
if isinstance(regu_loss, torch.Tensor):
regu_loss = regu_loss.to(para_cov.device)
regu_loss += torch.norm(para_cov - I, p='fro')
if num_param > 0:
regu_loss = regu_loss / num_param
else:
regu_loss = 0
if isinstance(regu_loss, torch.Tensor) and isinstance(outputs.loss, torch.Tensor):
regu_loss = regu_loss.to(outputs.loss.device)
outputs.loss += orth_reg_weight * regu_loss
return outputs
def adalora_mask_to_budget(self, model, budget):
value_ipt = {}
vector_ipt = {}
triplet_ipt = {}
# Get the importance score for A, E, B
for n, p in model.named_parameters():
if f'lora_A.{self.adapter_name}' in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
name_m = n.replace('lora_A', '%s')
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f'lora_B.{self.adapter_name}' in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
name_m = n.replace('lora_B', '%s')
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f'lora_E.{self.adapter_name}' in n:
entry_ipt = self._element_score(n)
name_m = n.replace('lora_E', '%s')
value_ipt[name_m] = entry_ipt
all_score = []
# Calculate the score for each triplet
for name_m in vector_ipt:
ipt_E = value_ipt[name_m]
ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
name_E = name_m % 'lora_E'
triplet_ipt[name_E] = sum_ipt.view(-1, 1)
sum_ipt = sum_ipt.view(-1)
if all_score:
sum_ipt = sum_ipt.to(all_score[0].device)
all_score.append(sum_ipt)
# Get the threshold by ranking ipt
mask_threshold = torch.kthvalue(
torch.cat(all_score),
k=self.init_bgt - budget,
)[0].item()
rank_pattern = {}
# Mask the unimportant triplets
with torch.no_grad():
for n, p in model.named_parameters():
if f'lora_E.{self.adapter_name}' in n:
p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
return rank_pattern
def keep_device_forward(self, *args, **kwargs):
x = args[0]
weight = self.weight if hasattr(self, 'weight') else self.weight0 # compat megatron
if weight.device != x.device:
return self.forward_origin(x.to(weight.device), *args[1:], **kwargs)
else:
return self.forward_origin(*args, **kwargs)
def hot_patch_peft_module():
from peft.tuners.lora import LoraLayer
if hasattr(LoraModel, '_create_and_replace_origin'):
return
# Fix Lora does not support NonDynamicallyQuantizableLinear
LoraModel._create_and_replace_origin = LoraModel._create_and_replace
LoraModel._create_and_replace = _create_and_replace_hook
AdaLoraModel._create_and_replace_origin = AdaLoraModel._create_and_replace
AdaLoraModel._create_and_replace = _create_and_replace_hook
VeraModel._create_and_replace_origin = VeraModel._create_and_replace
VeraModel._create_and_replace = _create_and_replace_hook
BOFTModel._create_and_replace_origin = BOFTModel._create_and_replace
BOFTModel._create_and_replace = _create_and_replace_hook
if FourierFTModel is not None:
FourierFTModel._create_and_replace_origin = FourierFTModel._create_and_replace
FourierFTModel._create_and_replace = _create_and_replace_hook
if BoneModel is not None:
BoneModel._create_and_replace_origin = BoneModel._create_and_replace
BoneModel._create_and_replace = _create_and_replace_hook
# Support type conversion
def __new_init__(self, model: torch.nn.Module, config: Dict[str, LoraConfig], adapter_name: str):
self.__init_origin__(model, config, adapter_name)
active_adapters = self.active_adapter
if isinstance(active_adapters, str):
active_adapters = [active_adapters]
for active_adapter in active_adapters:
active_config = config[active_adapter] if isinstance(config, dict) else config
if hasattr(active_config, 'lora_dtype'):
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
_convert_dtype(module, active_adapter, active_config.lora_dtype)
for lora in list(module.lora_A.values()) + list(module.lora_B.values()):
if not hasattr(lora, 'forward_origin'):
lora.forward_origin = lora.forward
lora.forward = MethodType(keep_device_forward, lora)
LoraModel.__init_origin__ = LoraModel.__init__
LoraModel.__init__ = __new_init__
# Support LoRA+
PeftModel.create_optimizer_param_groups = create_optimizer_param_groups
PeftConfigMixin.from_pretrained_origin = PeftConfigMixin.from_pretrained
PeftConfigMixin.from_pretrained = LoraConfig.from_pretrained
# Compatible with SwiftModel
def dummy_function(*args, **kwargs):
logger.warn(f'The function {kwargs["func"]} has no effects, consider using other functions.')
PeftModel.activate_adapter = PeftModel.set_adapter
PeftModel.deactivate_adapter = partial(dummy_function, func='deactivate_adapter')
PeftModel.set_active_adapters = partial(dummy_function, func='set_active_adapters')
# Fix adalora does not support device_map
AdaLoraModel.forward = adalora_forward
RankAllocator.mask_to_budget = adalora_mask_to_budget
def get_wrapped_class(module_class):
"""Get a custom wrapper class for peft classes to download the models from the ModelScope hub
Args:
module_class: The actual module class
Returns:
The wrapper
"""
class PeftWrapper(module_class):
@classmethod
def from_pretrained(cls, model, model_id, *args, revision: Optional[str] = None, **kwargs):
if not os.path.exists(model_id):
model_id = snapshot_download(model_id, revision=revision)
return module_class.from_pretrained(model, model_id, *args, **kwargs)
PeftWrapper.__name__ = module_class.__name__
PeftWrapper.__qualname__ = module_class.__qualname__
return PeftWrapper
def wrap_module(module):
if not hasattr(module, 'from_pretrained'):
return module
return get_wrapped_class(module)
hot_patch_peft_module()
PeftModel = wrap_module(PeftModel)
PeftConfig = wrap_module(PeftConfig)
PeftModelForSeq2SeqLM = wrap_module(PeftModelForSeq2SeqLM)
PeftModelForSequenceClassification = wrap_module(PeftModelForSequenceClassification)
PeftModelForTokenClassification = wrap_module(PeftModelForTokenClassification)
PeftModelForCausalLM = wrap_module(PeftModelForCausalLM)
PromptEncoderConfig = wrap_module(PromptEncoderConfig)
PromptTuningConfig = wrap_module(PromptTuningConfig)
PrefixTuningConfig = wrap_module(PrefixTuningConfig)
PromptLearningConfig = wrap_module(PromptLearningConfig)
LoraConfig = wrap_module(LoraConfig)
AdaLoraConfig = wrap_module(AdaLoraConfig)
LoHaConfig = wrap_module(LoHaConfig)
LoKrConfig = wrap_module(LoKrConfig)
LoftQConfig = wrap_module(LoftQConfig)
OFTConfig = wrap_module(OFTConfig)
BOFTConfig = wrap_module(BOFTConfig)
VeraConfig = wrap_module(VeraConfig)
OFTConfig = wrap_module(OFTConfig)
get_peft_config = get_peft_config
get_peft_model_state_dict = get_peft_model_state_dict
get_peft_model = get_peft_model