sparse / ms-swift /swift /tuners /lora_layers.py
Enxin's picture
Upload folder using huggingface_hub
96fe658 verified
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
import math
import re
import warnings
from itertools import chain
from typing import Dict, List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.lora import Conv2d as _Conv2d
from peft.tuners.lora import Embedding as _Embedding
from peft.tuners.lora import Linear as _Linear
from peft.tuners.lora import LoraLayer
from peft.tuners.lora import LoraModel as _LoraModel
from peft.tuners.lora.tp_layer import LoraParallelLinear as _LoraParallelLinear
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import _get_submodules, get_quantization_config
from transformers import Conv1D
from swift.utils import get_logger
from .peft import LoraConfig
from .utils import ActivationMixin, ModulesToSaveWrapper, SwiftAdapter
logger = get_logger()
dispatchers = []
class LoRAActivationMixin(ActivationMixin):
@property
def active_adapters(self):
return self.get_activated_adapters()
@property
def active_adapter(self) -> str:
return self.get_activated_adapters()
def set_adapter(self, adapter_names, offload=None):
if isinstance(adapter_names, str):
adapter_names = [adapter_names]
# Deactivate grads on the inactive adapter and activate grads on the active adapter
for layer_name in self.adapter_layer_names:
module_dict = getattr(self, layer_name)
for key, layer in module_dict.items():
if key in adapter_names:
self.set_activation(key, True)
layer.requires_grad_(True)
SwiftAdapter.save_memory(layer, key, self.module_key, True)
else:
self.set_activation(key, False)
layer.requires_grad_(False)
SwiftAdapter.save_memory(layer, key, self.module_key, False, offload=offload)
def save_memory(self, adapter_name, activate, offload=None):
for layer_name in self.adapter_layer_names:
module_dict = getattr(self, layer_name)
for key, layer in module_dict.items():
if key == adapter_name:
if activate:
SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, True)
else:
SwiftAdapter.save_memory(layer, layer_name + '.' + key, self.module_key, False, offload=offload)
def merge(self, *args, **kwargs):
if not self.unique_thread:
raise AssertionError('Merge is unsupported in multiple thread, '
'please set `USE_UNIQUE_THREAD=1` in env variable to merge LoRA.')
return super().merge(*args, **kwargs)
if is_bnb_available():
import bitsandbytes as bnb
from peft.tuners.lora.bnb import Linear8bitLt as _Linear8bitLt
class Linear8bitLt(LoRAActivationMixin, _Linear8bitLt):
def __init__(
self,
*args,
module_key: str,
**kwargs,
):
super(Linear8bitLt, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
loaded_in_8bit = kwargs.get('loaded_in_8bit', False)
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
eightbit_kwargs = kwargs.copy()
eightbit_kwargs.update({
'has_fp16_weights': target.state.has_fp16_weights,
'threshold': target.state.threshold,
'index': target.index,
})
new_module = Linear8bitLt(target, adapter_name, module_key=module_key, **eightbit_kwargs)
return new_module
dispatchers.append(dispatch_bnb_8bit)
if is_bnb_4bit_available():
from peft.tuners.lora.bnb import Linear4bit as _Linear4bit
class Linear4bit(LoRAActivationMixin, _Linear4bit):
def __init__(
self,
*args,
module_key: str,
**kwargs,
):
super(Linear4bit, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, module_key: str, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
loaded_in_4bit = kwargs.get('loaded_in_4bit', False)
if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
fourbit_kwargs = kwargs.copy()
fourbit_kwargs.update({
'compute_dtype': target_base_layer.compute_dtype,
'compress_statistics': target_base_layer.weight.compress_statistics,
'quant_type': target_base_layer.weight.quant_type,
})
new_module = Linear4bit(target, adapter_name, module_key=module_key, **fourbit_kwargs)
return new_module
dispatchers.append(dispatch_bnb_4bit)
def dispatch_default(
target: torch.nn.Module,
adapter_name: str,
lora_config: LoraConfig,
module_key: str,
**kwargs,
) -> Optional[torch.nn.Module]:
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Embedding):
embedding_kwargs = kwargs.copy()
embedding_kwargs.pop('fan_in_fan_out', None)
embedding_kwargs.update(lora_config.loftq_config)
new_module = Embedding(target, adapter_name, module_key=module_key, **embedding_kwargs)
elif isinstance(target_base_layer, torch.nn.Conv2d):
kwargs.update(lora_config.loftq_config)
new_module = Conv2d(target, adapter_name, module_key=module_key, **kwargs)
elif isinstance(target_base_layer, torch.nn.Linear):
if target_base_layer.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
# Fix issue: https://github.com/modelscope/ms-swift/issues/342
return None
if kwargs['fan_in_fan_out']:
warnings.warn('fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. '
'Setting fan_in_fan_out to False.')
kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = False
kwargs.update(lora_config.loftq_config)
new_module = Linear(target, adapter_name, module_key=module_key, **kwargs)
elif isinstance(target_base_layer, Conv1D):
if not kwargs['fan_in_fan_out']:
warnings.warn('fan_in_fan_out is set to False but the target module is `Conv1D`. '
'Setting fan_in_fan_out to True.')
kwargs['fan_in_fan_out'] = lora_config.fan_in_fan_out = True
kwargs.update(lora_config.loftq_config)
new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, module_key=module_key, **kwargs)
return new_module
dispatchers.append(dispatch_default)
class Embedding(LoRAActivationMixin, _Embedding):
def __init__(
self,
*args,
module_key: str,
**kwargs,
) -> None:
super(Embedding, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class Linear(LoRAActivationMixin, _Linear):
def __init__(self, *args, module_key: str, **kwargs):
super(Linear, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class Conv2d(LoRAActivationMixin, _Conv2d):
def __init__(self, *args, module_key: str, **kwargs):
super(Conv2d, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class LoraParallelLinear(LoRAActivationMixin, _LoraParallelLinear):
def __init__(self, *args, module_key: str, **kwargs):
super(LoraParallelLinear, self).__init__(module_key)
self.set_activation(args[1], True)
super(ActivationMixin, self).__init__(*args, **kwargs)
class LoraModel(_LoraModel):
prefix: str = 'lora_'
def __init__(self, model, config, adapter_name):
if config is not None:
super().__init__(model, config, adapter_name)
else:
nn.Module.__init__(self)
self.model = model
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == 'none':
continue
if bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for m in model.modules():
if isinstance(m, LoraLayer) and hasattr(m, 'bias') and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f'Requested bias: {bias}, is not implemented.')
def inject_adapter(self,
model: nn.Module,
adapter_name: str,
autocast_adapter_dtype: bool = True,
low_cpu_mem_usage: bool = False):
r"""
Override code:
1. ModulesToSaveWrapper construction method: add module_key=key argument to offload to cpu
"""
peft_config = self.peft_config[adapter_name]
# Note: If possible, all checks should be performed *at the start of this method*.
# This way, we can raise early if something goes wrong, without leaving the model
# in a bad (half-initialized) state.
self._check_new_adapter_config(peft_config)
is_target_modules_in_base_model = False
key_list = [key for key, _ in model.named_modules()]
_check_for_modules_to_save = getattr(peft_config, 'modules_to_save', None) is not None
_has_modules_to_save = False
model_config = getattr(model, 'config', {'model_type': 'custom'})
if hasattr(model_config, 'to_dict'):
model_config = model_config.to_dict()
peft_config = self._prepare_adapter_config(peft_config, model_config)
from peft.tuners.tuners_utils import _maybe_include_all_linear_layers
try:
from peft.utils.constants import DUMMY_TARGET_MODULES
except ImportError: # compat with peft==0.11.*
DUMMY_TARGET_MODULES = 'dummy-target-modules'
if getattr(peft_config, 'target_modules', None) == DUMMY_TARGET_MODULES:
# dummy adapter, we allow not matching any module
key_list = []
is_target_modules_in_base_model = True
# update peft_config.target_modules if required
peft_config = _maybe_include_all_linear_layers(peft_config, model)
self._prepare_model(peft_config, model)
for key in key_list:
if '_part_' in key or not key:
# Avoid lora conflict with part tuner
continue
# Check for modules_to_save in case
if _check_for_modules_to_save and any(
key.endswith(f'{module_to_save}') for module_to_save in peft_config.modules_to_save):
# Optionally set the modules to save
parent, target, target_name = _get_submodules(model, key)
if not isinstance(target, ModulesToSaveWrapper):
new_module = ModulesToSaveWrapper(target, adapter_name=adapter_name, module_key=key)
setattr(parent, target_name, new_module)
else:
target.update(adapter_name)
_has_modules_to_save = True
continue
if not self._check_target_module_exists(peft_config, key):
continue
self.targeted_module_names.append(key)
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(model, key)
self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key)
if not is_target_modules_in_base_model and hasattr(peft_config, 'target_modules'):
raise ValueError(f'Target modules {peft_config.target_modules} not found in the base model. '
f'Please check the target modules and try again.')
self._mark_only_adapters_as_trainable(self.model)
if self.peft_config[adapter_name].inference_mode:
for n, p in self.model.named_parameters():
if adapter_name in n:
p.requires_grad = False
if _has_modules_to_save:
if not hasattr(model, 'modules_to_save'):
model.modules_to_save = set(peft_config.modules_to_save)
else:
model.modules_to_save.update(set(peft_config.modules_to_save))
def _convert_dtype(self, target: nn.Module, lora_dtype: str):
if lora_dtype == 'float32':
torch_dtype = torch.float32
elif lora_dtype == 'float16':
torch_dtype = torch.float16
elif lora_dtype == 'bfloat16':
torch_dtype = torch.bfloat16
else:
torch_dtype = None
if torch_dtype is not None:
if hasattr(target, 'lora_A'):
target.lora_A.to(torch_dtype)
target.lora_B.to(torch_dtype)
if hasattr(target, 'lora_embedding_A'):
target.lora_embedding_A.to(torch_dtype)
target.lora_embedding_B.to(torch_dtype)
def _create_and_replace(
self,
lora_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
"""
Override code:
1. Import bnb from upper code
2. Support dtype converting
3. Support skipping NonDynamicallyQuantizableLinear
4. Add current_key argument to _create_new_module
5. Use Class type defined here
6. Allow new_module being None
"""
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
# Regexp matching - Find key which matches current target_name in patterns provided
pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys()))
target_name_key = next(filter(lambda key: re.match(rf'.*\.{key}$', current_key), pattern_keys), current_key)
r = lora_config.rank_pattern.get(target_name_key, lora_config.r)
alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha)
kwargs = {
'r': r,
'lora_alpha': alpha,
'lora_dropout': lora_config.lora_dropout,
'fan_in_fan_out': lora_config.fan_in_fan_out,
'init_lora_weights': lora_config.init_lora_weights,
'use_rslora': lora_config.use_rslora,
'use_dora': lora_config.use_dora,
'loaded_in_8bit': getattr(self.model, 'is_loaded_in_8bit', False),
'loaded_in_4bit': getattr(self.model, 'is_loaded_in_4bit', False),
}
# compat with peft==0.11.*
if hasattr(lora_config, 'runtime_config'):
kwargs['ephemeral_gpu_offload'] = lora_config.runtime_config.ephemeral_gpu_offload
quant_methods = ['gptq', 'aqlm', 'awq']
for quant_method in quant_methods:
quantization_config = get_quantization_config(self.model, method=quant_method)
if quantization_config is not None:
kwargs[f'{quant_method}_quantization_config'] = quantization_config
# note: AdaLoraLayer is a subclass of LoraLayer, we need to exclude it
from peft.tuners.adalora import AdaLoraLayer
if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer):
if target.__class__.__name__ == 'NonDynamicallyQuantizableLinear':
# Fix issue: https://github.com/modelscope/ms-swift/issues/342
return
target.update_layer(
adapter_name,
r,
lora_alpha=alpha,
lora_dropout=lora_config.lora_dropout,
init_lora_weights=lora_config.init_lora_weights,
use_rslora=lora_config.use_rslora,
use_dora=lora_config.use_dora,
)
self._convert_dtype(target, lora_config.lora_dtype)
ActivationMixin.mark_all_sub_modules_as_plugin(target)
else:
new_module = self._create_new_module(lora_config, adapter_name, target, current_key=current_key, **kwargs)
if new_module is not None:
ActivationMixin.mark_all_sub_modules_as_plugin(new_module)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
self._convert_dtype(new_module, lora_config.lora_dtype)
def _replace_module(self, parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, 'base_layer'):
child = child.base_layer
if not hasattr(new_module, 'base_layer'):
if hasattr(new_module, 'W_q'): # HQQ
new_module.W_q = child.W_q
else:
new_module.weight = child.weight
if hasattr(child, 'bias'):
new_module.bias = child.bias
if getattr(child, 'state', None) is not None:
if hasattr(new_module, 'base_layer'):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
meta = torch.device('meta')
# dispatch to correct device
for name, module in new_module.named_modules():
if (self.prefix in name) or ('ranknum' in name):
weight = (
child.qweight if hasattr(child, 'qweight') else child.W_q if hasattr(child, 'W_q') else
child.weight if hasattr(child, 'weight') else next(child.parameters()))
if not any(p.device == meta for p in module.parameters()):
module.to(weight.device)
@staticmethod
def _create_new_module(lora_config, adapter_name, target, **kwargs):
"""
Override code:
1. Support current_key argument
2. Support MergedLinear
3. Support skipping NonDynamicallyQuantizableLinear(Move to dispatcher)
4. Use Class type defined here(Move to dispatcher)
5. return None instead of raising error when target type not found
"""
# Collect dispatcher functions to decide what backend to use for the replaced LoRA layer. The order matters,
# because the first match is always used. Therefore, the default layers should be checked last.
current_key = kwargs.pop('current_key')
new_module = None
if lora_config.use_qa_lora:
kwargs['use_qa_lora'] = True
kwargs['group_size'] = lora_config.group_size
if lora_config.use_merged_linear:
bias = kwargs.pop('bias', False)
new_module = MergedLinear(
adapter_name, current_key, target, bias=bias, enable_lora=lora_config.enable_lora, **kwargs)
else:
for dispatcher in dispatchers:
new_module = dispatcher(target, adapter_name, lora_config=lora_config, module_key=current_key, **kwargs)
if new_module is not None: # first match wins
break
if new_module is None:
# no module could be matched
logger.debug(
f'Target module {target} is not supported. Currently, only the following modules are supported: '
'`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.')
new_module = None
return new_module
class LoRALayer(ActivationMixin):
def __init__(
self,
adapter_name: str,
module_key: str,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
super().__init__(module_key)
self.adapter_name = adapter_name
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
if not self._unique_thread:
self.merge_weights = False
class MergedLinear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(self,
adapter_name: str,
module_key: str,
base_layer: nn.Linear,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
enable_lora: List[bool] = [False],
fan_in_fan_out: bool = False,
merge_weights: bool = True,
bias: bool = True,
device=None,
dtype=None,
**kwargs):
nn.Linear.__init__(self, base_layer.in_features, base_layer.out_features, bias=bias, device=device, dtype=dtype)
LoRALayer.__init__(
self,
adapter_name,
module_key,
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
merge_weights=merge_weights)
assert base_layer.out_features % len(enable_lora) == 0, \
'The length of enable_lora must divide out_features'
self.enable_lora = enable_lora
self.fan_in_fan_out = fan_in_fan_out
self.base_layer = base_layer
# Actual trainable parameters
if r > 0 and any(enable_lora):
self.lora_A = nn.Parameter(self.weight.new_zeros((r * sum(enable_lora), base_layer.in_features)))
self.lora_B = nn.Parameter(
self.weight.new_zeros((base_layer.out_features // len(enable_lora) * sum(enable_lora),
r))) # weights for Conv1D with groups=sum(enable_lora)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
# Compute the indices
self.lora_ind = self.weight.new_zeros((base_layer.out_features, ),
dtype=torch.bool).view(len(enable_lora), -1)
self.lora_ind[enable_lora, :] = True
self.lora_ind = self.lora_ind.view(-1)
self.reset_parameters()
self.weight = self.base_layer.weight
if getattr(self.base_layer, 'bias', None) is not None:
self.bias = self.base_layer.bias
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)
def reset_parameters(self):
nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def zero_pad(self, x):
result = x.new_zeros((len(self.lora_ind), *x.shape[1:]))
result[self.lora_ind] = x
return result
def merge_AB(self):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
delta_w = F.conv1d(self.lora_A.unsqueeze(0), self.lora_B.unsqueeze(-1), groups=sum(self.enable_lora)).squeeze(0)
return T(self.zero_pad(delta_w))
def merge(self, **kwargs):
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0 and any(self.enable_lora):
self.weight.data += self.merge_AB() * self.scaling
def unmerge(self, **kwargs):
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0 and any(self.enable_lora):
self.weight.data -= self.merge_AB() * self.scaling
self.merged = False
def forward(self, x: torch.Tensor, **kwargs):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.merged or not self.is_activated(self.adapter_name):
return F.linear(x, T(self.weight), bias=self.bias)
else:
result = F.linear(x, T(self.weight), bias=self.bias)
if self.r > 0:
x_dtype = x.dtype
x = x.to(self.lora_A.dtype)
result += self.lora_dropout(x) @ T(self.merge_AB().T) * self.scaling
result = result.to(x_dtype)
return result
def mark_lora_as_trainable(model: nn.Module, adapter_name: str, bias: str = 'none') -> None:
if bias == 'none':
return
elif bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for n, m in model.named_modules():
if 'lora_' in n and f'.{adapter_name}' in n and \
hasattr(m, 'bias') and \
m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_state_dict(state_dict, adapter_name: str, bias: str = 'none') -> Dict[str, torch.Tensor]:
if bias == 'none':
to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k}
elif bias == 'all':
to_return = {k: state_dict[k] for k in state_dict if 'lora_' in k or 'bias' in k}
elif bias == 'lora_only':
to_return = {}
for k in state_dict:
if 'lora_' in k:
to_return[k] = state_dict[k]
bias_name = k.split('lora_')[0] + 'bias'
if bias_name in state_dict:
to_return[bias_name] = state_dict[bias_name]
else:
raise NotImplementedError
return {k: v for k, v in to_return.items() if (('lora_' in k and f'.{adapter_name}' in k) or ('bias' in k))}