Enxin's picture
Upload folder using huggingface_hub
96fe658 verified

Agent支持

数据集格式

纯文本Agent和多模态Agent的示例数据样本如下:

{"tools": "[{\"type\": \"function\", \"function\": {\"name\": \"realtime_aqi\", \"description\": \"天气预报。获取实时空气质量。当前空气质量,PM2.5,PM10信息\", \"parameters\": {\"type\": \"object\", \"properties\": {\"city\": {\"type\": \"string\", \"description\": \"城市名,例如:上海\"}}, \"required\": [\"city\"]}}}]", "messages": [{"role": "user", "content": "北京和上海今天的天气情况"}, {"role": "tool_call", "content": "{\"name\": \"realtime_aqi\", \"arguments\": {\"city\": \"北京\"}}"}, {"role": "tool_call", "content": "{\"name\": \"realtime_aqi\", \"arguments\": {\"city\": \"上海\"}}"}, {"role": "tool_response", "content": "{\"city\": \"北京\", \"aqi\": \"10\", \"unit\": \"celsius\"}"}, {"role": "tool_response", "content": "{\"city\": \"上海\", \"aqi\": \"72\", \"unit\": \"fahrenheit\"}"}, {"role": "assistant", "content": "根据天气预报工具,北京今天的空气质量指数为10,属于良好水平;上海今天的空气质量指数为72,属于轻度污染水平。"}]}
{"tools": "[{\"type\": \"function\", \"function\": {\"name\": \"click\", \"description\": \"点击屏幕中的某个位置\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"integer\", \"description\": \"横坐标,表示屏幕上的水平位置\"}, \"y\": {\"type\": \"integer\", \"description\": \"纵坐标,表示屏幕上的垂直位置\"}}, \"required\": [\"x\", \"y\"]}}}]", "messages": [{"role": "user", "content": "<image>现在几点了?"}, {"role": "assistant", "content": "<think>\n我可以通过打开日历App来获取当前时间。\n</think>\n"}, {"role": "tool_call", "content": "{\"name\": \"click\", \"arguments\": {\"x\": 105, \"y\": 132}}"}, {"role": "tool_response", "content": "{\"images\": \"<image>\", \"status\": \"success\"}"}, {"role": "assistant", "content": "成功打开日历App,现在的时间为中午11点"}], "images": ["desktop.png", "calendar.png"]}
  • agent_template为"react_en", "hermes"等情况下,该格式适配所有模型Agent训练,可以轻松在不同模型间切换。
  • 其中tools是一个包含tool列表的json字符串,messages中role为'tool_call'和'tool_response/tool'的content部分都需要是json字符串。
  • tools字段将在训练/推理时和{"role": "system", ...}"部分组合,根据agent_template组成完整的system部分。
  • {"role": "tool_call", ...}部分将根据agent_template自动转成对应格式的{"role": "assistant", ...},多条连续的{"role": "assistant", ...}将拼接在一起组成完整的assistant_content。
  • {"role": "tool_response", ...}也可以写成{"role": "tool", ...},这两种写法是等价的。该部分也将根据agent_template自动转换格式。该部分在训练时将不进行损失的计算,角色类似于{"role": "user", ...}
  • 该格式支持并行调用工具,例子参考第一条数据样本。多模态Agent数据样本中<image>标签数量应与"images"长度相同,其标签位置代表图像特征的插入位置。当然也支持其他模态,例如audios, videos。
  • 注意:您也可以手动将数据处理为role为system/user/assistant的messages格式。agent_template的作用是将其中的tools字段以及role为tool_call和tool_response的messages部分,自动映射为标准的role为system/user/assistant的messages格式。

以下为上述两条数据样本由qwen2_5和qwen2_5_vl的template进行encode后的input_ids和labels,选择的agent_template为hermes

样本一(并行工具调用):

[INPUT_IDS] <|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function", "function": {"name": "realtime_aqi", "description": "天气预报。获取实时空气质量。当前空气质量,PM2.5,PM10信息", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "城市名,例如:上海"}}, "required": ["city"]}}}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call><|im_end|>
<|im_start|>user
北京和上海今天的天气情况<|im_end|>
<|im_start|>assistant
<tool_call>
{"name": "realtime_aqi", "arguments": {"city": "北京"}}
</tool_call>
<tool_call>
{"name": "realtime_aqi", "arguments": {"city": "上海"}}
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"city": "北京", "aqi": "10", "unit": "celsius"}
</tool_response>
<tool_response>
{"city": "上海", "aqi": "72", "unit": "fahrenheit"}
</tool_response><|im_end|>
<|im_start|>assistant
根据天气预报工具,北京今天的空气质量指数为10,属于良好水平;上海今天的空气质量指数为72,属于轻度污染水平。<|im_end|>

[LABELS] [-100 * 195]<tool_call>
{"name": "realtime_aqi", "arguments": {"city": "北京"}}
</tool_call>
<tool_call>
{"name": "realtime_aqi", "arguments": {"city": "上海"}}
</tool_call><|im_end|>[-100 * 67]根据天气预报工具,北京今天的空气质量指数为10,属于良好水平;上海今天的空气质量指数为72,属于轻度污染水平。<|im_end|>

样本二(多模态,混合assistant和tool_call):

[INPUT_IDS] <|im_start|>system
You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function", "function": {"name": "click", "description": "点击屏幕中的某个位置", "parameters": {"type": "object", "properties": {"x": {"type": "integer", "description": "横坐标,表示屏幕上的水平位置"}, "y": {"type": "integer", "description": "纵坐标,表示屏幕上的垂直位置"}}, "required": ["x", "y"]}}}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call><|im_end|>
<|im_start|>user
<|vision_start|>[151655 * 729]<|vision_end|>现在几点了?<|im_end|>
<|im_start|>assistant
<think>
我可以通过打开日历App来获取当前时间。
</think>
<tool_call>
{"name": "click", "arguments": {"x": 105, "y": 132}}
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"images": "<|vision_start|>[151655 * 729]<|vision_end|>", "status": "success"}
</tool_response><|im_end|>
<|im_start|>assistant
成功打开日历App,现在的时间为中午11点<|im_end|>

[LABELS] [-100 * 924]<think>
我可以通过打开日历App来获取当前时间。
</think>
<tool_call>
{"name": "click", "arguments": {"x": 105, "y": 132}}
</tool_call><|im_end|>[-100 * 759]成功打开日历App,现在的时间为中午11点<|im_end|>

react_en是常用的agent template格式之一,以下为样本一由qwen2_5使用agent_template='react_en'进行encode后的input_ids和labels:

[INPUT_IDS] <|im_start|>system
Answer the following questions as best you can. You have access to the following tools:

realtime_aqi: Call this tool to interact with the realtime_aqi API. What is the realtime_aqi API useful for? 天气预报。获取实时空气质量。当前空气质量,PM2.5,PM10信息 Parameters: {"type": "object", "properties": {"city": {"type": "string", "description": "城市名,例如:上海"}}, "required": ["city"]} Format the arguments as a JSON object.

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [realtime_aqi]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!
<|im_end|>
<|im_start|>user
北京和上海今天的天气情况<|im_end|>
<|im_start|>assistant
Action: realtime_aqi
Action Input: {'city': '北京'}
Action: realtime_aqi
Action Input: {'city': '上海'}
Observation:{"city": "北京", "aqi": "10", "unit": "celsius"}
Observation:{"city": "上海", "aqi": "72", "unit": "fahrenheit"}
根据天气预报工具,北京今天的空气质量指数为10,属于良好水平;上海今天的空气质量指数为72,属于轻度污染水平。<|im_end|>

[LABELS] [-100 * 233]Action: realtime_aqi
Action Input: {'city': '北京'}
Action: realtime_aqi
Action Input: {'city': '上海'}
Observation:[-100 * 45]根据天气预报工具,北京今天的空气质量指数为10,属于良好水平;上海今天的空气质量指数为72,属于轻度污染水平。<|im_end|>

更多模型和agent_template的尝试可以使用以下代码,更多的agent template可选值参考这里

from swift.llm import get_model_tokenizer, get_template

_, tokenizer = get_model_tokenizer('ZhipuAI/GLM-4-9B-0414', load_model=False)
template = get_template(tokenizer.model_meta.template, tokenizer, agent_template='hermes')
data = {...}
template.set_mode('train')
encoded = template.encode(data)
print(f'[INPUT_IDS] {template.safe_decode(encoded["input_ids"])}\n')
print(f'[LABELS] {template.safe_decode(encoded["labels"])}')

tools格式

tools字段提供了模型可以调用的API信息。你需要提供tools的名字,描述和参数,示例如下:

tools = [{
    'type': 'function',
    'function': {
        'name': 'get_current_weather',
        'description': 'Get the current weather in a given location',
        'parameters': {
            'type': 'object',
            'properties': {
                'location': {
                    'type': 'string',
                    'description': 'The city and state, e.g. San Francisco, CA'
                },
                'unit': {
                    'type': 'string',
                    'enum': ['celsius', 'fahrenheit']
                }
            },
            'required': ['location']
        }
    }
}]

loss_scale的使用

loss_scale可以对模型输出部分的训练损失权重进行调节。例如在ReACT格式中,可以设置--loss_scale react(loss_scale配置文件书写在这里),该参数起到的作用是:

'Thought:'和'Final Answer:'部分权重为1,'Action:'和'Action Input:'部分权重为2,'Observation:'字段本身权重为2,'Observation:'后面的工具调用结果权重为0。

具体的loss_scale插件设计,请参考插件化文档.

训练

  • 训练Base模型的Agent能力,通过修改--model切换不同模型,参考这里
  • 训练GLM4的agent_template为hermes,参考这里
  • 使用--loss_scale对模型输出部分的损失权重进行调整,参加这里

推理

  • 🚀原始模型或者全参数训练后模型的推理,参考这里
  • LoRA训练后推理,参考这里

部署

服务端和客户端代码,参考这里