Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- ONNX
|
6 |
+
- DML
|
7 |
+
- DirectML
|
8 |
+
- ONNXRuntime
|
9 |
+
- gemma
|
10 |
+
- google
|
11 |
+
- conversational
|
12 |
+
- custom_code
|
13 |
+
inference: false
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
---
|
17 |
+
# Gemma-7B-Instruct-ONNX
|
18 |
+
|
19 |
+
## Model Summary
|
20 |
+
This repository contains optimized versions of the [gemma-7b-it](https://huggingface.co/google/gemma-7b-it) model, designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm.
|
21 |
+
|
22 |
+
## ONNX Models
|
23 |
+
|
24 |
+
Here are some of the optimized configurations we have added:
|
25 |
+
- **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
|
26 |
+
- **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4.
|
27 |
+
|
28 |
+
## Usage
|
29 |
+
|
30 |
+
### Installation and Setup
|
31 |
+
|
32 |
+
To use the Gemma-7B-Instruct-ONNX model on Windows with DirectML, follow these steps:
|
33 |
+
|
34 |
+
1. **Create and activate a Conda environment:**
|
35 |
+
```sh
|
36 |
+
conda create -n onnx python=3.10
|
37 |
+
conda activate onnx
|
38 |
+
```
|
39 |
+
|
40 |
+
2. **Install Git LFS:**
|
41 |
+
```sh
|
42 |
+
winget install -e --id GitHub.GitLFS
|
43 |
+
```
|
44 |
+
|
45 |
+
3. **Install Hugging Face CLI:**
|
46 |
+
```sh
|
47 |
+
pip install huggingface-hub[cli]
|
48 |
+
```
|
49 |
+
|
50 |
+
4. **Download the model:**
|
51 |
+
```sh
|
52 |
+
huggingface-cli download EmbeddedLLM/gemma-7b-it-onnx --include="onnx/directml/*" --local-dir .\gemma-7b-it-onnx
|
53 |
+
```
|
54 |
+
|
55 |
+
5. **Install necessary Python packages:**
|
56 |
+
```sh
|
57 |
+
pip install numpy==1.26.4
|
58 |
+
pip install onnxruntime-directml
|
59 |
+
pip install --pre onnxruntime-genai-directml
|
60 |
+
```
|
61 |
+
|
62 |
+
6. **Install Visual Studio 2015 runtime:**
|
63 |
+
```sh
|
64 |
+
conda install conda-forge::vs2015_runtime
|
65 |
+
```
|
66 |
+
|
67 |
+
7. **Download the example script:**
|
68 |
+
```sh
|
69 |
+
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
|
70 |
+
```
|
71 |
+
|
72 |
+
8. **Run the example script:**
|
73 |
+
```sh
|
74 |
+
python phi3-qa.py -m .\gemma-7b-it-onnx
|
75 |
+
```
|
76 |
+
|
77 |
+
### Hardware Requirements
|
78 |
+
|
79 |
+
**Minimum Configuration:**
|
80 |
+
- **Windows:** DirectX 12-capable GPU (AMD/Nvidia)
|
81 |
+
- **CPU:** x86_64 / ARM64
|
82 |
+
|
83 |
+
**Tested Configurations:**
|
84 |
+
- **GPU:** AMD Ryzen 8000 Series iGPU (DirectML)
|
85 |
+
- **CPU:** AMD Ryzen CPU
|
86 |
+
|
87 |
+
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
|
88 |
+
|
89 |
+
This model card corresponds to the 7B instruct version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B base model](https://huggingface.co/google/gemma-7b), and [2B instruct model](https://huggingface.co/google/gemma-2b-it).
|
90 |
+
|
91 |
+
**Resources and Technical Documentation**:
|
92 |
+
|
93 |
+
* [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
|
94 |
+
* [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
|
95 |
+
* [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-7b-it-gg-hf)
|
96 |
+
|
97 |
+
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
|