ssyok commited on
Commit
cd85391
·
verified ·
1 Parent(s): 01b5826

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -48
README.md CHANGED
@@ -25,54 +25,6 @@ DirectML is a high-performance, hardware-accelerated DirectX 12 library for mach
25
  Here are some of the optimized configurations we have added:
26
  - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
27
 
28
- ## Usage
29
-
30
- ### Installation and Setup
31
-
32
- To use the EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX model on Windows with DirectML, follow these steps:
33
-
34
- 1. **Create and activate a Conda environment:**
35
- ```sh
36
- conda create -n onnx python=3.10
37
- conda activate onnx
38
- ```
39
-
40
- 2. **Install Git LFS:**
41
- ```sh
42
- winget install -e --id GitHub.GitLFS
43
- ```
44
-
45
- 3. **Install Hugging Face CLI:**
46
- ```sh
47
- pip install huggingface-hub[cli]
48
- ```
49
-
50
- 4. **Download the model:**
51
- ```sh
52
- huggingface-cli download EmbeddedLLM/Phi-3-mini-4k-instruct-062024-onnx --include="onnx/directml/Phi-3-mini-4k-instruct-062024-int4/*" --local-dir .\Phi-3-mini-4k-instruct-062024-int4
53
- ```
54
-
55
- 5. **Install necessary Python packages:**
56
- ```sh
57
- pip install numpy==1.26.4
58
- pip install onnxruntime-directml
59
- pip install --pre onnxruntime-genai-directml==0.3.0
60
- ```
61
-
62
- 6. **Install Visual Studio 2015 runtime:**
63
- ```sh
64
- conda install conda-forge::vs2015_runtime
65
- ```
66
-
67
- 7. **Download the example script:**
68
- ```sh
69
- Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
70
- ```
71
-
72
- 8. **Run the example script:**
73
- ```sh
74
- python phi3-qa.py -m .\Phi-3-mini-4k-instruct-062024-int4
75
- ```
76
 
77
  ### Hardware Requirements
78
 
 
25
  Here are some of the optimized configurations we have added:
26
  - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ### Hardware Requirements
30