Update README.md
Browse files
README.md
CHANGED
@@ -25,54 +25,6 @@ DirectML is a high-performance, hardware-accelerated DirectX 12 library for mach
|
|
25 |
Here are some of the optimized configurations we have added:
|
26 |
- **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
|
27 |
|
28 |
-
## Usage
|
29 |
-
|
30 |
-
### Installation and Setup
|
31 |
-
|
32 |
-
To use the EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX model on Windows with DirectML, follow these steps:
|
33 |
-
|
34 |
-
1. **Create and activate a Conda environment:**
|
35 |
-
```sh
|
36 |
-
conda create -n onnx python=3.10
|
37 |
-
conda activate onnx
|
38 |
-
```
|
39 |
-
|
40 |
-
2. **Install Git LFS:**
|
41 |
-
```sh
|
42 |
-
winget install -e --id GitHub.GitLFS
|
43 |
-
```
|
44 |
-
|
45 |
-
3. **Install Hugging Face CLI:**
|
46 |
-
```sh
|
47 |
-
pip install huggingface-hub[cli]
|
48 |
-
```
|
49 |
-
|
50 |
-
4. **Download the model:**
|
51 |
-
```sh
|
52 |
-
huggingface-cli download EmbeddedLLM/Phi-3-mini-4k-instruct-062024-onnx --include="onnx/directml/Phi-3-mini-4k-instruct-062024-int4/*" --local-dir .\Phi-3-mini-4k-instruct-062024-int4
|
53 |
-
```
|
54 |
-
|
55 |
-
5. **Install necessary Python packages:**
|
56 |
-
```sh
|
57 |
-
pip install numpy==1.26.4
|
58 |
-
pip install onnxruntime-directml
|
59 |
-
pip install --pre onnxruntime-genai-directml==0.3.0
|
60 |
-
```
|
61 |
-
|
62 |
-
6. **Install Visual Studio 2015 runtime:**
|
63 |
-
```sh
|
64 |
-
conda install conda-forge::vs2015_runtime
|
65 |
-
```
|
66 |
-
|
67 |
-
7. **Download the example script:**
|
68 |
-
```sh
|
69 |
-
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py"
|
70 |
-
```
|
71 |
-
|
72 |
-
8. **Run the example script:**
|
73 |
-
```sh
|
74 |
-
python phi3-qa.py -m .\Phi-3-mini-4k-instruct-062024-int4
|
75 |
-
```
|
76 |
|
77 |
### Hardware Requirements
|
78 |
|
|
|
25 |
Here are some of the optimized configurations we have added:
|
26 |
- **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
### Hardware Requirements
|
30 |
|