Elron's picture
Pushing deberta-v3-large-emotion to hub
a029410
|
raw
history blame
2.63 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: deberta-v3-large-emotion-lr7e-6-gas1-ls0.1
    results: []

deberta-v3-large-emotion-lr7e-6-gas1-ls0.1

This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8311
  • Accuracy: 0.8235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 10.0
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2787 0.49 100 1.1127 0.4866
1.089 0.98 200 0.9668 0.7139
0.9134 1.47 300 0.8720 0.7834
0.8618 1.96 400 0.7726 0.7941
0.686 2.45 500 0.7337 0.8209
0.6333 2.94 600 0.7350 0.8235
0.5765 3.43 700 0.7561 0.8235
0.5502 3.92 800 0.7273 0.8476
0.5049 4.41 900 0.8137 0.8102
0.4695 4.9 1000 0.7581 0.8289
0.4657 5.39 1100 0.8404 0.8048
0.4549 5.88 1200 0.7800 0.8369
0.4305 6.37 1300 0.8575 0.8235
0.4209 6.86 1400 0.8572 0.8102
0.3983 7.35 1500 0.8392 0.8316
0.4139 7.84 1600 0.8152 0.8209
0.393 8.33 1700 0.8261 0.8289
0.3979 8.82 1800 0.8328 0.8235
0.3928 9.31 1900 0.8364 0.8209
0.3848 9.8 2000 0.8322 0.8235

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.9.0
  • Datasets 2.2.2
  • Tokenizers 0.11.6