zhangir-azerbayev commited on
Commit
74cd0a5
1 Parent(s): e8473e1
Files changed (2) hide show
  1. README.md +50 -1
  2. llemma.jpg +0 -0
README.md CHANGED
@@ -7,4 +7,53 @@ language:
7
  tags:
8
  - math
9
  - reasoning
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  tags:
8
  - math
9
  - reasoning
10
+ ---
11
+ <img src="llemma.jpg" width="400">
12
+
13
+ [Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)
14
+
15
+ [Github ](https://github.com/EleutherAI/math-lm) | [ArXiv](#)
16
+
17
+ **Llemma 7B** is a language model for mathematics. It was initialized with [Code Llama 7B](https://github.com/facebookresearch/codellama) weights, and trained on the [Proof-Pile-2](https://huggingface.co/datasets/EleutherAI/proof-pile-2) for 200B tokens.
18
+
19
+ This model also comes in a 34B parameter version: [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b).
20
+
21
+ ## Evaluations
22
+
23
+ Llemma models are particularly strong at chain-of-thought mathematical reasoning and using computational tools for mathematics, such as Python and formal theorem provers.
24
+
25
+
26
+ ### Chain-of-thought Math
27
+ On chain-of-thought mathematics tasks, Llemma models outperform Llama-2, Code Llama, and when controlled for model size, outperform Minerva.
28
+
29
+ | Model | Size | GSM8k | [OCW](https://openreview.net/forum?id=IFXTZERXdM7) | MMLU-STEM | [SAT](https://huggingface.co/datasets/mcaleste/sat_multiple_choice_math_may_23) | MATH |
30
+ |------------|------|--------|-------|-----------|-------|-------|
31
+ | Llama 2 | 7B | 11.8% | 3.7% | 29.9% | 25% | 3.2% |
32
+ | Code Llama | 7B | 10.5% | 4.4% | 25.1% | 9.4% | 4.4% |
33
+ | LLEMMA | 7B | 36.4% | 7.7% | 37.7% | 53.1% | 17.2% |
34
+ | Minerva | 8B | 16.2% | 7.7% | 35.6% | - | 14.1% |
35
+ |------------|------|--------|-------|-----------|-------|-------|
36
+ | Code Llama | 34B | 29.6% | 7.0% | 40.5% | 40.6% | 11.9% |
37
+ | LLEMMA | 34B | 51.5% | 11.8% | 49.0% | 71.9% | 24.1% |
38
+ |------------|------|--------|-------|-----------|-------|-------|
39
+ | Minerva | 62B | 52.4% | 12.0% | 53.9% | - | 27.6% |
40
+ | Minerva | 540B | 58.8% | 17.6% | 63.9% | - | 33.6% |
41
+
42
+
43
+ Further performance can be extracted by using majority voting:
44
+
45
+ | Model | Size | GSM8k maj@100 | OCW maj@100 | MMLU-STEM maj@16 | SAT maj@16 | MATH maj@256 |
46
+ |---------|------|-------------|-----------|-----------------|-----------|------------|
47
+ | LLEMMA | 7B | 54.0% | 14.3% | 49.9% | 78.1% | 32.0% |
48
+ | Minerva | 8B | 28.4% | 12.5% | 43.4% | - | 25.4% |
49
+ |---------|------|-------------|-----------|-----------------|-----------|------------|
50
+ | LLEMMA | 34B | 69.3% | 18.4% | 59.7% | 81.3% | 41.0% |
51
+ |---------|------|-------------|-----------|-----------------|-----------|------------|
52
+ | Minerva | 62B | 68.5% | 23.5% | 63.5% | - | 43.4% |
53
+ | Minerva | 540B | 78.5% | 30.8% | 75.0% | - | 50.3% |
54
+
55
+ ### Tool Use and Theorem Proving
56
+ In addition to chain-of-thought reasoning, Llemma has strong capabilities in computational mathematics tasks. For tool use and formal theorem proving evaluations, see [our paper](#).
57
+
58
+
59
+
llemma.jpg ADDED