MLstructureMining / README.md
Ekjaer's picture
Update README.md
6f1065e verified
|
raw
history blame
9.42 kB
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_file: MLstructureMining_model.bin

Model description

MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype patterns from a large database of crystal structures, providing real-time structure characterization by screening vast quantities of data in seconds.

Intended uses & limitations

[More Information Needed]

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
objective binary:logistic
use_label_encoder True
base_score 0.5
booster gbtree
colsample_bylevel 1
colsample_bynode 1
colsample_bytree 1
enable_categorical False
gamma 0
gpu_id -1
importance_type
interaction_constraints
learning_rate 0.300000012
max_delta_step 0
max_depth 6
min_child_weight 1
missing nan
monotone_constraints ()
n_estimators 100
n_jobs 8
num_parallel_tree 1
predictor auto
random_state 0
reg_alpha 0
reg_lambda 1
scale_pos_weight
subsample 1
tree_method auto
validate_parameters 1
verbosity

Model Plot

The model plot is below.

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)
Please rerun this cell to show the HTML repr or trust the notebook.

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value

How to Get Started with the Model

Use the code below to get started with the model.

import joblib
import json
import pandas as pd
clf = joblib.load(MLstructureMining_model.bin)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]