savchenkoyana
commited on
Commit
·
061bac4
1
Parent(s):
778986f
add ViT x4.8 ONNX, small fixes in test.py, and allow measuring macs on ONNX
Browse files- README.md +2 -1
- ViT-B-32/{ViT-B-32-ENOT.pth → ViT-B-32-ENOT-x4_8.onnx} +2 -2
- ViT-B-32/{ViT-B-32-ENOT.onnx → ViT-B-32-ENOT-x9.onnx} +0 -0
- measure_mac.py +25 -3
- requirements.txt +1 -0
- test.py +4 -0
README.md
CHANGED
@@ -28,7 +28,8 @@ Evaluation code is also based on Torchvision references.
|
|
28 |
| Model | Latency (MMACs) | Accuracy (%) |
|
29 |
|--------------------------|:---------------:|:-------------:|
|
30 |
| **ViT-B/32 Torchvision** | 4413.99 | 75.91 |
|
31 |
-
| **ViT-B/32 ENOT**
|
|
|
32 |
|
33 |
## MobileNetV2
|
34 |
|
|
|
28 |
| Model | Latency (MMACs) | Accuracy (%) |
|
29 |
|--------------------------|:---------------:|:-------------:|
|
30 |
| **ViT-B/32 Torchvision** | 4413.99 | 75.91 |
|
31 |
+
| **ViT-B/32 ENOT (x4.8)** | 911.80 (x4.84) | 75.68 (-0.23) |
|
32 |
+
| **ViT-B/32 ENOT (x9)** | 490.78 (x8.99) | 73.72 (-2.19) |
|
33 |
|
34 |
## MobileNetV2
|
35 |
|
ViT-B-32/{ViT-B-32-ENOT.pth → ViT-B-32-ENOT-x4_8.onnx}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3597a973923ab2be41e046ef08cbccadd67279853e78185194f906086063e626
|
3 |
+
size 72211694
|
ViT-B-32/{ViT-B-32-ENOT.onnx → ViT-B-32-ENOT-x9.onnx}
RENAMED
File without changes
|
measure_mac.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
import argparse
|
2 |
|
|
|
3 |
import torch
|
4 |
from fvcore.nn import FlopCountAnalysis
|
|
|
5 |
|
6 |
|
7 |
def get_args():
|
8 |
parser = argparse.ArgumentParser()
|
9 |
-
parser.add_argument(
|
|
|
|
|
|
|
|
|
10 |
|
11 |
return parser.parse_args()
|
12 |
|
@@ -14,8 +20,24 @@ def get_args():
|
|
14 |
def main():
|
15 |
args = get_args()
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
model.eval()
|
20 |
|
21 |
flops = FlopCountAnalysis(model.cpu(), torch.ones((1, 3, 224, 224)))
|
|
|
1 |
import argparse
|
2 |
|
3 |
+
import onnx
|
4 |
import torch
|
5 |
from fvcore.nn import FlopCountAnalysis
|
6 |
+
from onnx2torch import convert
|
7 |
|
8 |
|
9 |
def get_args():
|
10 |
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument(
|
12 |
+
"--model-ckpt",
|
13 |
+
type=str,
|
14 |
+
help="Model checkpoint. Both PyTorch and ONNX models can be used.",
|
15 |
+
)
|
16 |
|
17 |
return parser.parse_args()
|
18 |
|
|
|
20 |
def main():
|
21 |
args = get_args()
|
22 |
|
23 |
+
if args.model_ckpt.endswith(".onnx"):
|
24 |
+
onnx_model = onnx.load(args.model_ckpt)
|
25 |
+
model = convert(onnx_model)
|
26 |
+
elif args.model_ckpt.endswith((".pth", ".pt")):
|
27 |
+
checkpoint = torch.load(args.model_ckpt, map_location="cpu")
|
28 |
+
model = checkpoint["model_ckpt"]
|
29 |
+
if "model_ema" in checkpoint:
|
30 |
+
state_dict = {}
|
31 |
+
for key, value in checkpoint["model_ema"].items():
|
32 |
+
if not "module." in key:
|
33 |
+
continue
|
34 |
+
state_dict[key.replace("module.", "")] = value
|
35 |
+
model.load_state_dict(state_dict)
|
36 |
+
else:
|
37 |
+
raise RuntimeError(
|
38 |
+
f"Cannot process file {args.model_ckpt} with extension {args.model_ckpt.split('.')[-1]}"
|
39 |
+
)
|
40 |
+
|
41 |
model.eval()
|
42 |
|
43 |
flops = FlopCountAnalysis(model.cpu(), torch.ones((1, 3, 224, 224)))
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ torchvision==0.14.1
|
|
3 |
fvcore==0.1.5.post20221221
|
4 |
onnxruntime-gpu==1.15.1
|
5 |
onnx==1.13.1
|
|
|
|
3 |
fvcore==0.1.5.post20221221
|
4 |
onnxruntime-gpu==1.15.1
|
5 |
onnx==1.13.1
|
6 |
+
onnx2torch==1.5.6
|
test.py
CHANGED
@@ -96,6 +96,9 @@ def load_data(valdir):
|
|
96 |
def main(args):
|
97 |
print(args)
|
98 |
|
|
|
|
|
|
|
99 |
if torch.cuda.is_available():
|
100 |
device = torch.device("cuda")
|
101 |
else:
|
@@ -128,6 +131,7 @@ def main(args):
|
|
128 |
state_dict[key.replace("module.", "")] = value
|
129 |
model.load_state_dict(state_dict)
|
130 |
model = model.to(device)
|
|
|
131 |
|
132 |
accuracy = evaluate(
|
133 |
model=model,
|
|
|
96 |
def main(args):
|
97 |
print(args)
|
98 |
|
99 |
+
torch.backends.cudnn.benchmark = False
|
100 |
+
torch.backends.cudnn.deterministic = True
|
101 |
+
|
102 |
if torch.cuda.is_available():
|
103 |
device = torch.device("cuda")
|
104 |
else:
|
|
|
131 |
state_dict[key.replace("module.", "")] = value
|
132 |
model.load_state_dict(state_dict)
|
133 |
model = model.to(device)
|
134 |
+
model.eval()
|
135 |
|
136 |
accuracy = evaluate(
|
137 |
model=model,
|